全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geomaterials  2023 

Determination of Curie Point Depth and Heat Flow Using Airborne Magnetic Data over the Kom-Ombo and Nuqra Basins, Southern Eastern Desert, Egypt

DOI: 10.4236/gm.2023.134007, PP. 91-108

Keywords: Curie Point, Heat Flow, Airborne Magnetic Data, Nuqra Basin, Kom-Ombo Basin, Eastern Desert

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Kom-Ombo and Nuqra basins in southern Egypt have recently been discovered as potential hydrocarbon basins. The lack of information about the geothermal gradient and heat flow in the study area gives importance to studying the heat flow and the geothermal gradient. Several studies were carried out to investigate the geothermal analyses of the northwestern desert, as well as the west and east of the Nile River, using density, compressive wave velocity, and bottom hole temperature (BHT) measured from deep oil wells. This research relies on spectral analysis of airborne magnetic survey data in the Kom-Ombo and Nuqra basins in order to estimate the geothermal gradient based on calculating the depth to the bottom of the magnetic source that caused the occurrence of these magnetic deviations. This depth is equal to the CPD, at which the material loses its magnetic polarisation. This method is fast and gives satisfactory results. Usually, it can be applied as a reconnaissance technique for geothermal exploration targets due to the abundance of magnetic data. The depth of the top (Zt) and centroid (Z0) of the magnetic source bodies was calculated for the 32 windows representing the study area using spectral analysis of airborne magnetic data. The curie-isotherm depth, geothermal gradient, and heat flow maps were constructed for the study area. The results showed that the CPD in the study area ranges from 13 km to 20 km. The heat flow map values range from 69 to 109 mW/m2, with an average of about 80 mW/m2. The calculated heat flow values in the assigned areas (A, B, C, and D) of the study area are considered to have high heat flow values, reaching 109 mW/m2. On the other hand, the heat flow values in the other parts range from 70 to 85 mW/m2. Since heat flow plays an essential role in the maturation of organic matter, it is recommended that hydrocarbon accumulations be located in places with high heat flow values, while deep drilling of hydrocarbon wells is recommended in places with low to moderate heat flow values.

References

[1]  Guiraud, R. and Maurin, J.C. (1992) Early Cretaceous Rifts of Western and Central Africa: An Overview. Tectonophysics, 213, 153-168.
https://doi.org/10.1016/0040-1951(92)90256-6
[2]  Philip, J., Babinot, J. F., Tronchetti, G., Fourcade, E., Ricou, L. E., Guiraud, R., Bellion, Y., Herbin, J. P., Combes, P. J., Cornee, J. J., and Dercourt, J. (1993) Late Cenomanian (94 to 92 Ma). In: Dercourt, J., Ricou, L.E. and Vrielynck, B., Eds., Atlas Tethys Paleoenvironmental Maps, Gauthier-Villars, Paris, 153-178.
[3]  Abdeen, M.M., Ramadan, F.S., Nabawy, B.S. and El Saadawy, O. (2021) Subsurface Structural Setting and Hydrocarbon Potentiality of the Komombo and Nuqra Basins, South Egypt: A Seismic and Petrophysical Integrated Study. Natural Resources Research, 30, 3575-3603.
https://doi.org/10.1007/s11053-021-09898-2
[4]  Taha, M.A. (1992) Mesozoic Rift System in Egypt, Their Southern Extension and Impact on Future Exploration. Proceedings of the 11th Petroleum Exploration and Production Conference, Cairo, 7-10 November 1992, 1-19.
[5]  Taha, M.A. and Abd El-Aziz, H.A. (1998) Mesozoic Rifting in Upper Egypt Concession (abs.). 14th International Petroleum Conference.
[6]  Yousif, M.S.M. and El-Assy, A.T.E. (1998) Quantitative Study of the Fracture Pattern of the Area around the Western Part of Wadi El-Kharit, South Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 1, 145-163.
[7]  Roden, J., Abdelsalam, M.G., Atekwana, E., El Qady, G. and Tarabees, E.A. (2011) Structural Influence on the Evolution of the Pre-Eonile Drainage System of Southern Egypt: Insights from Magnetotelluric and Gravity Data. Journal of African Earth Sciences, 61, 358-368.
https://doi.org/10.1016/j.jafrearsci.2011.08.007
[8]  Said, M.S. and Sakran, S. (2020) Structural Analysis and Tectonic Evolution of the Komombo Basin, South Egypt; An Example of Interior Cretaceous Rift. Journal of African Earth Sciences, 162, Article ID: 103719.
https://doi.org/10.1016/j.jafrearsci.2019.103719
[9]  Abu El Ella, N. (2006) Biostratigraphy and Lithostratigraphy of Komombo-1, Komombo-2, Komombo-3, Nuqra-1 and Kharit-1 Wells, Upper Egypt. Earth Resources Exploration (EREX), Unpublished Internal Report, Cairo.
[10]  Abu El Ella, N. (2011) Biostratigraphic Studies for the AlBaraka Oil Field, Upper Egypt. Earth Resources Exploration (EREX), Unpublished Internal Report, Cairo.
[11]  Ali, M., Darwish, M., Abdelhady, A. and Essa, M.A. (2017) Structural and Lithostratigraphic Evolution of Al Baraka Oil Field, Komombo Basin, Upper Egypt as Deduce from 2D Seismic Lines and Well Logging Data. Journal of Environmental Sciences, 4, 149-169.
[12]  Ali, M., Darwish, M., Essa, M.A. and Abdelhady, A. (2018) 2D Seismic Interpretation and Characterization of the Hauterivian-Early Barremian Source Rock in Al Baraka Oil Field, Komombo Basin, Upper Egypt. Journal of African Earth Sciences, 139, 113-119.
https://doi.org/10.1016/j.jafrearsci.2017.12.010
[13]  Ali, M., Darwish, M., Essa, M.A. and Abdelhady, A. (2019) Comparison of the Dakhla Formation Source Rock Potential between Komombo Basin and Gebel Duwi, Upper Egypt. Arabian Journal of Geosciences, 12, Article No. 613.
https://doi.org/10.1007/s12517-019-4833-y
[14]  Ali, M., Abdelmaksoud, A., Essa, M.A., Abdelhady, A. and Darwish, M. (2020) 3D Structural, Facies and Petrophysical Modeling of C Member of Six Hills Formation, Komombo Basin, Upper Egypt. Natural Resources Research, 29, 2575-2597.
https://doi.org/10.1007/s11053-019-09583-5
[15]  Ali, M., Abdelhady, A., Abdelmaksoud, A., Darwish, M. and Essa, M.A. (2020) 3D Static Modeling and Petrographic Aspects of the Albian/Cenomanian Reservoir, Komombo Basin, Upper Egypt. Natural Resources Research, 29, 1259-1281.
https://doi.org/10.1007/s11053-019-09521-5
[16]  El Nady, M.M., Ramadan, F.S., Hammad, M.M., Mousa, D.A. and Lotfy, N.M. (2018) Hydrocarbon Potentiality and Thermal Maturity of the Cretaceous Rocks in Al Baraka Oil Field, KomOmbo Basin, South Egypt. Egyptian Journal of Petroleum, 27, 1131-1143.
https://doi.org/10.1016/j.ejpe.2018.04.003
[17]  Selim, S.S. (2016) A New Tectono-Sedimentary Model for Cretaceous Mixed Nonmarine-Marine Oil-Prone Komombo Rift, South Egypt. International Journal of Earth Sciences, 105, 1387-1415.
https://doi.org/10.1007/s00531-015-1260-5
[18]  Hosney, H.M. (2000) Geophysical Parameters and Crustal Temperatures Characterizing Tectonic and Heat Flow Provinces of Egypt. Cairo University, Giza, 152-166.
[19]  Mohamed, H.S., Abdel Zaher, M., Mahmoud, M. and Senosy, M.M. (2015) Geothermal Gradients in the North Western Desert, Egypt as Deduced from Bottom-Hole Temperature and Aerogravity Data. Proceedings World Geothermal Congress, Melbourne, 19-25 April 2015.
[20]  Saada, S.A. (2016) Curie Point Depth and Heat Flow from Spectral Analysis of Aeromagnetic Data over the Northern Part of Western Desert, Egypt. Journal of Applied Geophysics, 134, 100-111.
https://doi.org/10.1016/j.jappgeo.2016.09.003
[21]  Tarshan, A. and Shimanskiy, S. (2019) Petroleum System Modelling and Identification of Promising Oil and Gas Bearing Objects in the Eastern Part of the Gulf of Suez, Egypt. Russian Journal of Earth Sciences, 19, ES4005.
https://doi.org/10.2205/2019ES000669
[22]  Conoco (1987) Geologic Map of Egypt (20 Sheets, Scale 1:500,000). Egyptian General Authority for Petroleum (UNESCO Joint Map Project), Cairo.
[23]  Nabawy, B.S., Rochette, P. and Géraud, Y. (2009) Petrophysical and Magnetic Pore Network Anisotropy of Some Cretaceous Sandstone from Tushka Basin, Egypt. Geophysical Journal International, 177, 43-61.
https://doi.org/10.1111/j.1365-246X.2008.04061.x
[24]  Nabawy, B.S., Rochette, P. and Géraud, Y. (2010) Electric Pore Fabric of the Nubia Sandstones in South Egypt: Characterization and Modelling. Geophysical Journal International, 183, 681-694.
https://doi.org/10.1111/j.1365-246X.2010.04789.x
[25]  Aero-Service (1984) Final Report on Airborne Magnetic and Radiation Survey in Eastern Desert, Egypt. Work Completed for the Egyptian General Petroleum Corporation (EGPC). Six Volumes, Aero-Service, Houston.
[26]  Blakely, R.J. (1995) Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, 307-308.
https://doi.org/10.1017/CBO9780511549816
[27]  Li, C.-F., Shi, X., Zhou, Z., Li, J., Geng, J. and Chen, B. (2010) Depths to the Magnetic Layer Bottom in the South China Sea Area and Their Tectonic Implications. Geophysical Journal International, 182, 1229-1247.
https://doi.org/10.1111/j.1365-246X.2010.04702.x
[28]  Okubo, Y., Graf, R.J., Hansent, R.O., Ogawa, K. and Tsu, H. (1985) Curie Point Depths of the Island of Kyushu and Surrounding Areas Japan. Geophysics, 53, 481-494.
https://doi.org/10.1190/1.1441926
[29]  Zhou, S. and Thybo, H. (1998) Power Spectra Analysis of Aeromagnetic Data and KTB Susceptibility Logs and Their Implication for Fractal Behavior of Crustal Magnetization. Pure and Applied Geophysics, 151, 147-159.
https://doi.org/10.1007/s000240050109
[30]  Oasis Montaj (Geosoft Program) (2007) Geosoft Mapping and Application System, Inc, Suit 500, Richmond St. West Toronto, ON Canada N5SIV6.
[31]  Thébault, E., Purucker, M., Kathryn, A., Langlais, W.B. and Sabaka, T.J. (2010) The Magnetic Field of the Earth’s Lithosphere. Space Science Reviews, 155, 95-127.
[32]  Spector, A. and Grant, F.S. (1970) Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35, 293-302.
https://doi.org/10.1190/1.1440092
[33]  Shuey, R.T., Schellinger, D.K., Tripp, A.C. and Alley, L.B. (1977) Curie Depth Determination from Aeromagnetic Spectra. Geophysical Journal International, 50, 75-101.
https://doi.org/10.1111/j.1365-246X.1977.tb01325.x
[34]  Bhattacharyya, B.K and Leu, L.-K. (1975) Analysis of Magnetic Anomalies over Yellowstone National Park: Mapping the Curie Point Isotherm Surface for Geothermal Reconnaissance. Journal of Geophysical Research, 80, 461-465.
https://doi.org/10.1029/JB080i032p04461
[35]  Bhattacharyya, B.K. anf Leu, L.-K. (1977) Spectral Analysis of Gravity and Magnetic Anomalies due to Rectangular Prismatic Bodies. Geophysics, 42, 41-50.
https://doi.org/10.1190/1.1440712
[36]  Tanaka, A., Okubo, Y. and Matsubayashi, O. (1999) Curie Point Depth Based on Spectrum Analysis of the Magnetic Anomaly Data in East and Southeast Asia. Tectonophysics, 306, 461-470.
https://doi.org/10.1016/S0040-1951(99)00072-4
[37]  Maden, N. (2010) Curie-Point Depth from Spectral Analysis of Magnetic Data in Erciyes Stratovolcano (Central TURKEY). Pure and Applied Geophysics, 167, 349-358.
https://doi.org/10.1007/s00024-009-0017-0
[38]  Saibi, H., Aboud, E. and Gottsmann, J. (2015) Curie Point Depth from Spectral Analysis of Aeromagnetic Data for Geothermal Reconnaissance in Afghanistan. Journal of African Earth Sciences, 111, 92-99.
https://doi.org/10.1016/j.jafrearsci.2015.07.019
[39]  Stampolidis, A., Kane, I., Tsokas, G.N. and Tsourlos, P. (2005) Curie Point Depths of Albania Inferred from Ground Total Field Magnetic Data. Surveys in Geophysics, 26, 461-480.
https://doi.org/10.1007/s10712-005-7886-2
[40]  Fourier, J. (1955) Analytical Theory of Heat. Dover Publications, New York.
[41]  Dimitriadis, K., Tselentis, G.-A. and Thanassoulas, K. (1987) A BASIC Program for 2-D Spectral Analysis of Gravity Data and Source-Depth Estimation. Computers & Geosciences, 13, 549-560.
https://doi.org/10.1016/0098-3004(87)90056-2
[42]  Nwobgo, P.O. (1998) Spectral Prediction of Magnetic Source Depths from Simple Numerical Models. Computers & Geosciences, 24, 847-852.
https://doi.org/10.1016/S0098-3004(97)00131-3
[43]  Feinstein, S., Kohn, B.P., Steckler, M.S. and Eyal, M. (1996) Thermal History of the Eastern Margin of the Gulf of Suez, I. Reconstruction from Borehole Temperature and Organic Maturity Measurements. Tectonophysics, 266, 203-220.
https://doi.org/10.1016/S0040-1951(96)00190-4
[44]  Wasilewski, P.J., Thomas, H.H. and Mayhew, M.A. (1979) The Moho as a Magnetic Boundary. Geophysical Research Letters, 6, 541-544.
https://doi.org/10.1029/GL006i007p00541
[45]  Glassley, W.E. (2010) Geothermal Energy: Renewable Energy and the Environment. CRC Press, Boca Raton, 276 p.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413