全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Performance Analysis of MAPbI3 and FAPbI3 Perovskites: Study of Optoelectronic Properties and Stability

DOI: 10.4236/mnsms.2023.134004, PP. 51-67

Keywords: Perovskites, FAPbI3, MAPbI3, Optoelectronic Properties, Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

The exploitation of fossil resources to meet humanity’s energy needs is the root cause of the climate warming phenomenon facing the planet. In this context, non-carbon-based energies, such as photovoltaic energy, are identified as crucial solutions. Organic perovskites MAPbI3 and FAPbI3, characterized by their abundance, low cost, and ease of synthesis, are emerging as candidates for study to enhance their competitiveness. It is within this framework that this article presents a comparative analysis of the performances of MAPbI3 and FAPbI3 perovskites in the context of photovoltaic devices. The analysis focuses on the optoelectronic characteristics and stability of these high-potential materials. The optical properties of perovskites are rigorously evaluated, including band gaps, photoluminescence, and light absorption, using UV-Vis spectroscopy and photoluminescence techniques. The crystal structure is characterized by X-ray diffraction, while film morphology is examined through scanning electron microscopy. The results reveal significant variations between the two types of perovskites, directly impacting the performance of resulting solar devices. Simultaneously, the stability of perovskites is subjected to a thorough study, exposing the materials to various environmental conditions, highlighting key determinants of their durability. Films of MAPbI3 and FAPbI3 demonstrate distinct differences in terms of topography, optical performance, and stability. Research has unveiled that planar perovskite solar cells based on FAPbI3 offer higher photoelectric conversion efficiency, surpassing their MAPbI3-based counterparts in terms of performance. These advancements aim to overcome stability constraints and enhance the long-term durability of perovskites, ultimately aiming for practical application of these materials. This comprehensive comparative analysis provides an enlightened understanding of the optoelectronic performance and stability of MAPbI3 and FAPbI3 perovskites, which is critically important to guide future research and development of solar devices that are both more efficient and sustainable.

References

[1]  Bouich, A. (2021) Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide Thin Films for Tandem Solar Cells. Doctoral Dissertation, Universitat Politècnica de València, Valencia.
[2]  Mohammed, M.H. (2020) Etude des propriétés Structurales, Optoélectroniques et Thermodynamiques des matériaux Pérovskites et Doubles Pérovskites à base d’halogènes. Master’s Thesis, Université de Mascara, Mascara.
[3]  Berry, F. (2020) Nanostructuration et cristaux photoniques à base de pérovskites hybrides pour applications photovoltaïques. Master’s Thesis, Université de Lyon, Lyon.
[4]  Lincot, D. (2018) Où en est la conversion photovoltaïque de l’énergie solaire? Photoniques, 93, 37-43.
https://doi.org/10.1051/photon/20189337
[5]  Bouri, N., Talbi, A., Khaaissa, Y., Derbali, S., Bouich, A. and Nouneh, K. (2022) Insight into MAPb1-xEuxI3 Based Perovskite Solar Cell Performance Using SCAPS Simulator. Optik, 271, Article ID: 170235.
https://doi.org/10.1016/j.ijleo.2022.170235
[6]  Musy, M. and Estival, L. (2017) Vivons la ville autrement: Des villes durables où il fait bon vivre au quotidien. Editions Quae, Versailles.
[7]  Bekkouche, A., Hezili, M. and Kouras, S.E. (2022) Synthèse, Caractérisation et Propriétés Photocatalytiques de quelques Oxydes Mixtes de type Pérovskite. Master’s Thesis, Université de Jijel, Jijel.
[8]  Spalla, M. (2019) Stabilité intrinsèque des cellules solaires pérovskites: Impact de la formulation de la couche active et des couches de transport de charges. Master’s Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères.
[9]  Leblanc, A. (2019) Pérovskites Halogénées pour l’électronique. Master’s Thesis, Université d’Angers, Angers.
[10]  Chang, C.Y., Tsao, F.C., Pan, C.J., Chi, G.C., Wang, H.T., Chen, J.J., et al. (2006) Electroluminescence from ZnO Nanowire/Polymer Composite p-n Junction. Applied Physics Letters, 88, Article ID: 173503.
https://doi.org/10.1063/1.2198480
[11]  Nguyen, T.P. (2020) Introduction à l’électronique organique. Vol. 2: Applications et commercialisation. ISTE Group, London.
[12]  Petibon, S. (2009) Nouvelles architectures distribuées de gestion et conversion de l’énergie pour les applications photovoltaïques. Master’s Thesis, Université Paul Sabatier-Toulouse III, Toulouse.
[13]  Elbaz, A. (2019) Sources laser compatibles silicium à base de Ge et GeSn à bande interdite directe. Master’s Thesis, Université Paris-Saclay, Gif-sur-Yvette.
[14]  Diab, H. (2017) Propriétés optiques des pérovskites hybrides 3D pour le photovoltaique. Master’s Thesis, Université Paris-Saclay, Gif-sur-Yvette.
[15]  Bouazizi, S., Tlili, W., Bouich, A., Soucase, B.M. and Omri, A. (2022) Design and Efficiency Enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au Perovskite Solar Cell Utilizing SCAPS-1D Simulator. Materials Research Express, 9, Article ID: 096402.
https://doi.org/10.1088/2053-1591/ac8d52
[16]  Jemli, K. (2016) Synthése et auto-assemblage de molécules de pérovskite pour la photonique et le marquage. Master’s Thesis, Université Paris-Saclay, Gif-sur-Yvette.
[17]  Banouh, T. and Aoun, D. (2018) Elaboration des couches minces par le procédé Sol-Gel type Spin Coating. Master’s Thesis, Université Akli Mouhand Oulhadj-Bouira, Bouira.
[18]  Breniaux, E. (2021) Elaboration et caractérisation de films minces de pérovskites halogénées inorganiques: Stabilisation de dispositifs photovoltaïques par ajout de la phase 2D Cs2PbCl2I2. Master’s Thesis, Université Paul Sabatier-Toulouse III, Toulouse.
[19]  De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H. and Ballif, C. (2014) Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters, 5, 1035-1039.
https://doi.org/10.1021/jz500279b
[20]  Sato, T., Takagi, S., Deledda, S., Hauback, B.C. and Orimo, S.I. (2016) Extending the Applicability of the Goldschmidt Tolerance Factor to Arbitrary Ionic Compounds. Scientific Reports, 6, Article No. 23592.
https://doi.org/10.1038/srep23592
[21]  Pauling, L. (1931) The Nature of the Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules. Journal of the American Chemical Society, 53, 1367-1400.
https://doi.org/10.1021/ja01355a027
[22]  Kieslich, G., Sun, S. and Cheetham, A.K. (2014) Solid-State Principles Applied to Organic-Inorganic Perovskites: New Tricks for an Old Dog. Chemical Science, 5, 4712-4715.
https://doi.org/10.1039/C4SC02211D
[23]  Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica, A32, 751-767.
https://doi.org/10.1107/S0567739476001551
[24]  Li, C., Lu, X., Ding, W., Feng, L., Gao, Y. and Guo, Z. (2008) Formability of ABX3 (X = F, Cl, Br, I) Halide Perovskites. Acta Crystallographica, B64, 702-707.
https://doi.org/10.1107/S0108768108032734
[25]  Slimani, M.A. (2019) Cellules solaires pérovskites imprimées et optimisation des couches pérovskites pour les cellules tandems. Master’s Thesis, École de technologie supérieure.
[26]  Benkedidah, H., Kaibache, A. and Boucheloukh, H.E. (2022) Dégradation photocatalytique du bleu de méthylène et du rouge de méthyle en solution aqueuse en utilisant des oxydes mixtes. Master’s Thesis, Université de Jijel, Jijel.
[27]  Dally, P. (2019) Cellules Solaires à base de Matériaux Pérovskites: De la caractérisation des matériaux à l’amélioration des rendements et de la stabilité. Master’s Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères.
[28]  Koné, K.E., Bouich, A., Marí-Guaita, J., Soucase, B.M. and Soro, D. (2023) Insight into the Effect of Halogen X in Methylammonium Lead Halide (MAPbX3) Spin-Coated on Zinc Oxide Film. Optical Materials, 135, Article ID: 113238.
https://doi.org/10.1016/j.optmat.2022.113238
[29]  Zhang, Y., Kim, S.G., Lee, D., Shin, H. and Park, N.G. (2019) Bifacial Stamping for High Efficiency Perovskite Solar Cells. Energy & Environmental Science, 12, 308-321.
https://doi.org/10.1039/C8EE02730G
[30]  Al Katrib, M. (2022) Cellules solaires pérovskites réalisées par électrodéposition. Master’s Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères.
[31]  Doumbia, Y., Bouich, A., Soro, D. and Soucase, B.M. (2022) Mixed Halide Head Perovskites Thin Films: Stability and Growth Investigation. Optik, 261, Article ID: 169222.
https://doi.org/10.1016/j.ijleo.2022.169222
[32]  Hadjadj, A. and Chaieb, A. (2017) Synthèse de nanoparticules de ZnS et études de leurs propriétés structurales et optiques.
[33]  Steveler, É. (2012) Etude des mécanismes de photoluminescence dans les nitrures et oxydes de silicium dopés aux terres rares (Er, Nd). Master’s Thesis, Université de Lorraine, Lorraine.
[34]  Nabila, B. (2019) Elaboration et caractérisation des couches d’oxyde de molybdène. Master’s Thesis, Faculté des Sciences et Technologies, Vandœuvre-lès-Nancy.
[35]  Hadjlarbi, K. (2021) Etude comparative d’une méthode d’électrodéposition directe et pulsée de films de TiO2 et son effet sur la dégradation photoélectrocatalytique du méthylorange (MO). Master’s Thesis, Université Ferhat Abbas, Setif.
[36]  Touré, A., Bouich, A., Doumbia, Y., Soucasse, B.M. and Soro, D. (2023) Investigation of the Optoelectronic and Structural Properties of FA(1–x)BixPbBr6I3 of Perovskite Mixed Halide Films. Optik, 288, Article ID: 171160.
https://doi.org/10.1016/j.ijleo.2023.171160
[37]  Fradi, K., Bouich, A., Slimi, B. and Chtourou, R. (2022) Towards Improving the Optoelectronics Properties of MAPbI3(1-x)B3x/ZnO Heterojunction by Bromine Doping. Optik, 249, Article ID: 168283.
[38]  Chehade, G. (2022) Dynamique de recombinaison et propriétés excitoniques dans les pérovskites hybrides 2D. Master’s Thesis, Université Paris-Saclay, Bures-sur-Yvette.
[39]  Lemercier, T. (2020) Développement de cellules solaires pérovskites semi-transparentes de type PIN dans la perspective d’une application tandem. Master’s Thesis, Université Savoie Mont Blanc, Chambéry.
[40]  Gayot, F. (2022) Etude de l’influence d’une intégration par ALD d’une couche sélective d’électrons en SnO2 dans les cellules photovoltaïques à base de pérovskite. Master’s Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères.
[41]  Boniface, C. (2006) Modélisation et diagnostic d’un propulseur à effet Hall pour satellites: Configuration magnétique et nouveaux concepts. Master’s Thesis, Université Paul Sabatier-Toulouse III, Toulouse.
[42]  Daufin, G. and Talbot, J. (1971) Etude de quelques problèmes de corrosion dans l’industrie laitière. Premiere partie. Géneralités sur la corrosion des métaux et alliages. Le Lait, 51, 375-398.
https://doi.org/10.1051/lait:197150719
[43]  Baussens, O. (2021) Nouveau matériau pérovskite pour la radiographie médicale. Master’s Thesis, Université de Bordeaux, Bordeaux.
[44]  Amelot, D. (2021) Etudes des propriétés d’interfaces pour les cellules solaires de nouvelle génération. Master’s Thesis, Sorbonne Université, Paris.
[45]  Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M. and Sum, T.C. (2013) Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342, 344-347.
https://doi.org/10.1126/science.1243167
[46]  Loncle, A. (2022) Nano-imageries synchrotron (Fluorescence X, diffraction X et photoluminescence) appliquées à l’étude du lien entre structure/propriété à l’échelle nanométrique dans les pérovskites hybrides pour le photovoltaïque. Master’s Thesis, Université Paris-Saclay, Gif-sur-Yvette.
[47]  Koné, K.E., Bouich, A., Soro, D. and Soucase, B.M. (2023) Surface Engineering of Zinc Oxide Thin as an Electron Transport Layer for Perovskite Solar Cells. Optical and Quantum Electronics, 55, 1-11.
https://doi.org/10.1007/s11082-023-04671-6
[48]  Bouich, A., Marí-Guaita, J., Soucase, B.M. and Palacios, P. (2023) Bright Future by Enhancing the Stability of Methylammonium Lead Triiodide Perovskites Thin Films through Rb, Cs and Li as Dopants. Materials Research Bulletin, 163, Article ID: 112213.
https://doi.org/10.1016/j.materresbull.2023.112213
[49]  Bouich, A., Torres, J.C., Chfii, H., Marí-Guaita, J., Khattak, Y.H., Baig, F., Palacios, P., et al. (2023) Delafossite as Hole Transport Layer a New Pathway for Efficient Perovskite-Based Solar Sells: Insight from Experimental, DFT and Numerical Analysis. Solar Energy, 250, 18-32.
https://doi.org/10.1016/j.solener.2022.12.022
[50]  Aka, A.H., Bouich, A., Diomandé, I., Aka, B. and Soucase, B.M. (2023) Comparative Study between CZTS and CZTSe Thin Layers for Photovoltaic Applications. E3S Web of Conferences, 412, Article No. 01100.
https://doi.org/10.1051/e3sconf/202341201100
[51]  Bouich, A., Torres, J.C., Khattak, Y.H., Baig, F., Marí-Guaita, J., Soucase, B.M., Palacios, P., et al. (2023) Bright Future by Controlling α/δ Phase Junction of Formamidinium Lead Iodide Doped by Imidazolium for Solar Cells: Insight from Experimental, DFT Calculations and SCAPS Simulation. Surfaces and Interfaces, 40, Article ID: 103159.
https://doi.org/10.1016/j.surfin.2023.103159

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413