全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MOFs复合材料及在锂离子电池中应用研究进展
Research Progress of MOFs Composites and Their Applications in Lithium-Ion Batteries

DOI: 10.12677/AEPE.2023.115017, PP. 147-160

Keywords: 锂离子电池,MOFs,结构调控,负极材料,发展前景
Lithium-Ion Batteries
, MOFs, Structural Regulation and Control, Negative Electrode Materials, Development Prospects

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂离子电池是目前纯电动汽车和混动汽车的主流动力电源,因其循环寿命长、能量密度高以及自放电率低等优点备受青睐。金属–有机框架材料(Metal-Organic Frameworks,简称MOFs,下同)作为新型功能分子晶体材料,在锂离子电池中有着潜在的应用前景,成为新型功能材料研究的热点。本文通过综合国内外相关文献报道,调研了MOFs材料及其衍生材料的合成方法和结构调控方面的最新研究进展。着重对于MOFs以及其衍生物在锂离子电池负极和正极方面的应用进行全面综合。同时,对目前MOFs在锂离子电池应用领域所面临的挑战进行了深入分析,同时也对其未来的发展前景进行了展望。进一步研究MOFs在锂离子电池中电荷负载能力和多孔结构特点等性能优势,以期为锂离子电池电极材料进一步开发与应用提供参考。
Lithium-ion batteries are the mainstream power supply for pure electric vehicles and hybrid vehicles at present, because of their long cycle life, high energy density and low self-discharge rate. Metal-organic frameworks (MOFs), as a new functional molecular crystal material, have potential application prospects in lithium-ion batteries and become a hot spot in the research of new functional materials. This article comprehensively reviews the latest research progress in synthesis methods and structural regulation of MOFs materials and their derivatives based on an integration of relevant literature reports from domestic and international sources. The application of MOFs and its derivatives in the negative and positive electrodes of lithium-ion batteries is reviewed, and the challenges and prospects of the application of MOFs in lithium-ion batteries are analyzed. Further research on the performance advantages of MOFs, such as their charge loading capacity and porous structural characteristics, in lithium-ion batteries is aimed at providing references for further development and application of electrode materials for lithium-ion batteries.

References

[1]  Cao, X., Tan, C., Sindoro, M. and Zhang, H. (2017) Hybrid Micro-/Nano-Structures Derived from Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chemical Society Reviews, 46, 2660-2677.
https://doi.org/10.1039/C6CS00426A
[2]  Zhu, Q.L. and Xu, Q. (2014) Metal-Organic Framework Composites. Chemical Society Reviews, 43, 5468-5512.
https://doi.org/10.1039/C3CS60472A
[3]  Xu, G., Nie, P., Dou, H., Ding, B., Li, L. and Zhang, X. (2017) Ex-ploring Metal-Organic Frameworks for Energy Storage in Batteries and Supercapacitors. Materials Today, 20, 191-209.
https://doi.org/10.1016/j.mattod.2016.10.003
[4]  Wang, H., Zhu, Q.L., Zou, R. and Xu, Q. (2017) Metal-Organic Frameworks for Energy Applications. Chem, 2, 52-80.
https://doi.org/10.1016/j.chempr.2016.12.002
[5]  Hu, B., De Bruler, C., Rhodes, Z. and Liu, T.L. (2017) Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) towards Sustainable and Safe Energy Storage. Journal of the American Chemical Society, 139, 1207-1214.
https://doi.org/10.1021/jacs.6b10984
[6]  Yuan, S., Zhu, Y.H., Li, W., Wang, S., Xu, D., Li, L., et al. (2017) Sur-factant-Free Aqueous Synthesis of Pure Single-Crystalline SnSe Nanosheet Clusters as Anode for High Energy-and Power-Density Sodium-Ion Batteries. Advanced Materials, 29, Article ID: 1602469.
https://doi.org/10.1002/adma.201602469
[7]  Wang, S., Sun, T., Yuan, S., Zhu, Y., Zhang, X., Yan, J., et al. (2017) P3-Type K0.33Co0.53Mn4O2?0.39H2O: A Novel Bifunctional Electrode for Na-Ion Batteries. Materials Horizons, 4, 1122-1127.
https://doi.org/10.1039/C7MH00512A
[8]  Wang, X., Fan, L., Gong, D., Zhu, J., Zhang, Q. and Lu, B. (2016) Core-Shell Ge@graphene@TiO2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and So-dium Ion Battery. Advanced Functional Materials, 26, 1104-1111.
https://doi.org/10.1002/adfm.201504589
[9]  Zhao, Y., Ding, Y., Li, Y., Peng, L., Byon, H.R., Goodenough, J.B., et al. (2015) A Chemistry and Material Perspective on Lithium Redox Flow Batteries toward High-Density Electrical En-ergy Storage. Chemical Society Reviews, 44, 7968-7996.
https://doi.org/10.1039/C5CS00289C
[10]  Cho, J., Jeong, S. and Kim, Y. (2015) Commercial and Research Battery Technologies for Electrical Energy Storage Applications. Pro-gress in Energy and Combustion Science, 48, 84-101.
https://doi.org/10.1016/j.pecs.2015.01.002
[11]  Peng, L., Zhu, Y., Li, H. and Yu, G. (2016) Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 12, 6183-6199.
https://doi.org/10.1002/smll.201602109
[12]  Jiao, Y., Pei, J., Yan, C., Chen, D., Hu, Y. and Chen, G. (2016) Layered Nickel Metal-Organic Framework for High-Performance Alkaline Battery-Supercapacitor Hybrid Devices. Journal of Materials Chemistry A, 4, 13344-13351.
https://doi.org/10.1039/C6TA05384J
[13]  Manthiram, A., Fu, Y., Chung, S.H., Zu, C. and Su, Y.S. (2014) Re-chargeable Lithium-Sulfur Batteries. Chemical Reviews, 114, 11751-11787.
https://doi.org/10.1021/cr500062v
[14]  Fang, R., Zhao, S., Sun, Z., Wang, D.W., Cheng, H.M. and Li, F. (2017) More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 29, Article ID: 1606823.
https://doi.org/10.1002/adma.201606823
[15]  Wei, T., Zhang, M., Wu, P., Tang, Y.J., Li, S.L., Shen, F.C., et al. (2017) POM-Based Metal-Organic Framework/Reduced Graphene Oxide Nanocomposites with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. Nano Energy, 34, 205-214.
https://doi.org/10.1016/j.nanoen.2017.02.028
[16]  Crabtree, G., Kocs, E. and Trahey, L. (2015) The Ener-gy-Storage Frontier: Lithium-Ion Batteries and beyond. MRS Bulletin, 40, 1067-1078.
https://doi.org/10.1557/mrs.2015.259
[17]  Li, Y., Xu, Y., Yang, W., Shen, W., Xue, H. and Pang, H. (2018) MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small, 14, Article ID: 1704435.
https://doi.org/10.1002/smll.201704435
[18]  Zhang, X., Chen, A., Zhong, M., Zhang, Z., Zhang, X., Zhou, Z., et al. (2019) Metal-Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electro-chemical Energy Reviews, 2, 29-104.
https://doi.org/10.1007/s41918-018-0024-x
[19]  Xie, X.C., Huang, K.J. and Wu, X. (2018) Metal-Organic Framework-Derived Hollow Materials for Electrochemical Energy Storage. Journal of Materials Chemistry A, 6, 6754-6771.
https://doi.org/10.1039/C8TA00612A
[20]  Ran, F., Yang, X., Xu, X., et al. (2021) Green Activation of Sustainable Resources to Synthesize Nitrogen-Doped Oxygen-Riched Porous Carbon Nanosheets towards High-Performance Supercapacitor. Chemical Engineering Journal, 412, Article ID: 128673.
https://doi.org/10.1016/j.cej.2021.128673
[21]  Shao, Y., El-Kady, M.F., Sun, J., et al. (2018) Design and Mecha-nisms of Asymmetric Supercapacitors. Chemical Reviews, 118, 9233-9280.
https://doi.org/10.1021/acs.chemrev.8b00252
[22]  Liu, S., Zhou, J., Cai, Z., Fang, G., Cai, Y., Pan, A., et al. (2016) Nb2O5 Quantum Dots Embedded in MOF-Derived Nitrogen-Doped Porous Carbon for Advanced Hybrid Supercapaci-tor Applications. Journal of Materials Chemistry A, 4, 17838-17847.
https://doi.org/10.1039/C6TA07856G
[23]  Zhao, X., Sanchez, B.M., Dobson, P.J. and Grant, P.S. (2011) The Role of Nanomaterials in Redox-Based Supercapacitors for Next-Generation Energy Storage Devices. Nanoscale, 3, 839-855.
https://doi.org/10.1039/c0nr00594k
[24]  Peng, L., Fang, Z., Zhu, Y., Yan, C. and Yu, G. (2018) Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 8, Article ID: 1702179.
https://doi.org/10.1002/aenm.201702179
[25]  Yang, J., Xiong, P., Zheng, C., Qiu, H. and Wei, M. (2014) Met-al-Organic Frameworks: A New Promising Class of Materials for a High-Performance Supercapacitor Electrode. Journal of Materials Chemistry A, 2, 16640-16644.
https://doi.org/10.1039/C4TA04140B
[26]  Zeng, G., Chen, Y., Chen, L., Xiong, P. and Wei, M. (2016) Hierar-chical Cerium Oxide Derived from Metal-Organic Frameworks for High-Performance Supercapacitor Electrodes. Elec-trochimica Acta, 222, 773-780.
https://doi.org/10.1016/j.electacta.2016.11.035
[27]  Xu, W., Li, T.T. and Zheng, Y.Q. (2016) Porous Co3O4 Na-noparticles Derived from a Co (ii)-Cyclohexanehexacarboxylate Metal-Organic Framework and Used in a Supercapacitor with Good Cycling Stability. RSC Advances, 6, 86447-86454.
https://doi.org/10.1039/C6RA17471J
[28]  Gao, W., Chen, D., Quan, H., Zou, R., Wang, W., Luo, X., et al. (2017) Fabrication of Hierarchical Porous Metal-Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustainable Chemistry & Engineering, 5, 871-878.
https://doi.org/10.1021/acssuschemeng.7b00112
[29]  Jiang, H.L. and Xu, Q. (2011) Porous Metal-Organic Frameworks as Platforms for Functional Applications. Chemical Com-munications, 47, 3351-3370.
https://doi.org/10.1039/c0cc05419d
[30]  Ye, M., Li, C., Zhao, Y. and Qu, L. (2016) Graphene Decorated with Bimodal Size of Carbon Polyhedrons for Enhanced Lithium Storage. Carbon, 106, 9-19.
https://doi.org/10.1016/j.carbon.2016.05.013
[31]  Sculley, J., Yuan, D. and Zhou, H.C. (2011) The Current Status of Hydrogen Storage in Metal-Organic Frameworks—Updated. Energy & Environmental Science, 4, 2721-2735.
https://doi.org/10.1039/c1ee01240a
[32]  Sun, L., Campbell, M.G. and Dinca, M. (2016) Electrically Conductive Porous Metal-Organic Frameworks. Angewandte Chemie International Edition Review, 55, 3566-3579.
https://doi.org/10.1002/anie.201506219
[33]  Yin, X., Song, Y., Wang, Y., Zhang, L. and Li, Q. (2014) Synthesis, Structure, and Luminescence Properties of Metal-Organic Frameworks Based on Benzo-Bis(Imidazole). Science China Chemistry, 57, 135-140.
https://doi.org/10.1007/s11426-013-4985-7
[34]  Lin, T., Chen, I.W., Liu, F., Yang, C., Bi, H., Xu, F., et al. (2015) Nitrogen-Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage. Science, 350, 1508-1513.
https://doi.org/10.1126/science.aab3798
[35]  Li, S., Jin, B., Li, H., Dong, C., Zhang, B., Xu, J., et al. (2017) Syn-ergistic Effect of Tubular Amorphous Carbon and Polypyrrole on Polysulfides in Li-S Batteries. Journal of Electroana-lytical Chemistry, 806, 41-49.
https://doi.org/10.1016/j.jelechem.2017.10.034
[36]  Li, S.L. and Xu, Q. (2013) Metal-Organic Frameworks as Platforms for Clean Energy. Energy & Environmental Science, 6, 1656-1683.
https://doi.org/10.1039/c3ee40507a
[37]  Xia, W., Mahmood, A., Zou, R. and Xu, Q. (2015) Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion. Energy & Environ-mental Science, 8, 1837-1866.
https://doi.org/10.1039/C5EE00762C
[38]  Schoedel, A., Ji, Z. and Yaghi, O.M. (2016) The Role of Metal-Organic Frameworks in a Carbon-Neutral Energy Cycle. Nature Energy, 1, Article No. 16034.
https://doi.org/10.1038/nenergy.2016.34
[39]  Ren, Y., Chia, G.H. and Gao, Z. (2013) Metal-Organic Frameworks in Fuel Cell Technologies. Nano Today, 8, 577-597.
https://doi.org/10.1016/j.nantod.2013.11.004
[40]  Zhang, H., Osgood, H., Xie, X., Shao, Y. and Wu, G. (2017) Engineering Nanostructures of PGM-Free Oxygen-Reduction Catalysts Using Metal-Organic Frameworks. Nano Energy, 31, 331-350.
https://doi.org/10.1016/j.nanoen.2016.11.033
[41]  Liu, T., He, F., Su, Y., et al. (2011) Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials. Advanced Mate-rials, 23, 2076-2081.
https://doi.org/10.1002/adma.201100058
[42]  Qu, C., Jiao, Y., Zhao, B., Chen, D., Zou, R., Walton, K.S., et al. (2016) Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis, and Stability Study. Nano Energy, 26, 66-73.
https://doi.org/10.1016/j.nanoen.2016.04.003
[43]  Xia, W., Qu, C., Liang, Z., Zhao, B., Dai, S., Qiu, B., et al. (2017) High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Frame-work/Graphene Aerogel Composite. Nano Letters, 17, 2788-2795.
https://doi.org/10.1021/acs.nanolett.6b05004
[44]  Liang, Z., Xia, W., Qu, C., Qiu, B., Tabassum, H., Gao, S., et al. (2017) Edge-Abundant Porous Fe3O4 Nanoparticles Docking in Nitrogen-Rich Graphene Aerogel as Efficient and Dura-ble Electrocatalyst for Oxygen Reduction. ChemElectroChem, 4, 2442-2247.
https://doi.org/10.1002/celc.201700627
[45]  Liu, D.X., Zou, D.T., Zhu, H.L., et al. (2018) Mesoporous Met-al-Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 14, 1801454-1801485.
https://doi.org/10.1002/smll.201801454
[46]  Ding, B., Wang, J., Chang, Z., et al. (2016) Self-Sacrificial Tem-plate-Directed Synthesis of Metal-Organic Framework-Derived Porous Carbon for Energy Storage Devices. ChemElec-troChem, 3, 668-674.
https://doi.org/10.1002/celc.201500536
[47]  Reddy, R., Lin, J., Chen, Y.Y., et al. (2020) Progress of Nanostruc-tured Metal Oxides Derived from Metal-Organic Frameworks as Anode Materials for Lithium-Ion Batteries. Coordina-tion Chemistry Reviews, 420, Article ID: 213434.
https://doi.org/10.1016/j.ccr.2020.213434
[48]  Bi, W.T., Zhou, M., Ma, Z.Y., et al. (2012) CuInSe2 Ultrathin Na-noplatelets: Novel Self-Sacrificial Template-Directed Synthesis and Application for Flexible Photodetectors. Chemical Communications, 48, 9162-9164.
https://doi.org/10.1039/c2cc34727j
[49]  Koo, J., Hwang, I., Yu, X.J., et al. (2017) Hollowing out MOFs: Hierar-chical Micro- and Mesoporous MOFs with Tailorable Porosity via Selective Acid Etching. Chemical Science, 8, 6799-6803.
https://doi.org/10.1039/C7SC02886E
[50]  Zhang, Z.C., Chen, Y.F., He, S., et al. (2014) Hierarchical Zn/Ni-MOF-2 Nanosheet Assembled Hollow Nanocubes for Multicomponent Catalytic Reactions. Angewandte Chemie International Edition, 53, 12517-12521.
https://doi.org/10.1002/anie.201406484
[51]  Liu, W., Yin, R., Xu, X., et al. (2019) Structural Engineering of Low-Dimensional Metal-Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 6, Article ID: 1802373.
https://doi.org/10.1002/advs.201802373
[52]  何淑花. MOFs基复合材料及其衍生物的制备及电化学性能研究[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2017.
[53]  He, S., Li, Z. and Wang, J. (2022) Bimetallic MOFs with Tunable Morphology: Synthesis and Enhanced Lithium Storage Properties. Journal of Solid State Chemistry, 307, Article ID: 122726.
https://doi.org/10.1016/j.jssc.2021.122726
[54]  Hu, M.L., Masoomi, M.Y. and Morsali, A. (2019) Template Strategies with MOFs. Coordination Chemistry Reviews, 387, 415-435.
https://doi.org/10.1016/j.ccr.2019.02.021
[55]  宋良浩. 界面反应参与MOFs衍生双金属氧化物的合成及其形成机理、催化性能的研究[D] : [硕士学位论文]. 济南: 济南大学, 2020.
[56]  Park, J.W., Zheng, H.M., Jun, Y.W. and Alivisatos, A.P. (2009) Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles. Journal of the American Chemical Society, 131, 13943-13945.
https://doi.org/10.1021/ja905732q
[57]  Wu, L.L., Wang, Z., Long, Y., et al. (2017) Multishelled NixCo3-xO4 Hol-low Microspheres Derived from Bimetal Organic Frameworks as Anode Materials for High Performance Lithium Ion Batteries. Small, 13, Article ID: 1604270.
https://doi.org/10.1002/smll.201604270
[58]  He, S., Li, Z., Ma, L., et al. (2017) Graphene Oxide-Templated Growth of MOFs with Enhanced Lithium-Storage Properties. New Journal of Chemistry, 41, 14209-14216.
https://doi.org/10.1039/C7NJ02846F
[59]  Chen, L.Y., Luque, R. and Li, Y.W. (2017) Controllable Design of Tunable Nanostructures inside Metal-Organic Frameworks. Chemical Society Reviews, 46, 4614-4630.
https://doi.org/10.1039/C6CS00537C
[60]  Kim, D. and Coskun, A. (2017) Template-Directed Approach toward the Realization of Ordered Heterogeneity in Bimetallic Metal-Organic Frameworks. Angewandte Chemie International Edition, 56, 5071-5076.
https://doi.org/10.1002/anie.201702501
[61]  Zhang, J., Shao, J., Zhang, X., et al. (2023) Facile Synthesis of Cu-BTC@Biochar with Controlled Morphology for Effective Toluene Adsorption at Medium-High Temperature. Chem-ical Engineering Journal, 452, Article ID: 139003.
https://doi.org/10.1016/j.cej.2022.139003
[62]  Kirchon, A., Feng, L., Drake, H.F., et al. (2018) From Fundamen-tals to Applications: A Toolbox for Robust and Multifunctional MOF Materials. Chemical Society Reviews, 47, 8611-8638.
https://doi.org/10.1039/C8CS00688A
[63]  Karagiaridi, O., Lalonde, M.B., Bury, W., et al. (2012) Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 134, 18790-18796.
https://doi.org/10.1021/ja308786r
[64]  Feng, L., Yuan, S., Zhang, L.L., et al. (2018) Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Met-al-Organic Frameworks. Journal of the American Chemical Society, 140, 2363-2372.
https://doi.org/10.1021/jacs.7b12916
[65]  Wang, W., Chai, M., Zulkifli, M.Y.B., et al. (2023) Metal-Organic Framework Composites from Mechanochemical Process. Molecular Systems Design & Engineering, 8, 560-579.
https://doi.org/10.1039/D2ME00211F
[66]  Xiao, W., Cheng, M., Liu, Y., et al. (2023) Functional Metal/Carbon Composites Derived from Metal-Organic Frameworks: Insight into Structures, Properties, Performances, and Mecha-nisms. ACS Catalysis, 13, 1759-1790.
https://doi.org/10.1021/acscatal.2c04807
[67]  Li, G.H., Yang, H., Li, F.C., et al. (2016) Facile Formation of a Nanostructured NiP2@C Material for Advanced Lithium-Ion Battery Anode Using Adsorption Property of Met-al-Organic Framework. Journal of Materials Chemistry, 4, 9593-9599.
https://doi.org/10.1039/C6TA02059C
[68]  Qu, C., Zhao, B., Jiao, Y., Chen, D., Dai, S., Deglee, B.M., et al. (2017) Functionalized Bimetallic Hydroxides Derived from Metal-Organic Frameworks for High-Performance Hybrid Superca-pacitor with Exceptional Cycling Stability. ACS Energy Letters, 2, 1263-1269.
https://doi.org/10.1021/acsenergylett.7b00265
[69]  戴良鸿, 刘劲远, 彭红建, 等. MOFs及其衍生材料在锂离子电池负极中的研究进展[J]. 复合材料学报, 2023, 40(4): 1924-1936.
[70]  Ke, F.S., Mishra, K., Jamison, L., Peng, X.X., Ma, S.G., Huang, L., Sun, S.G. and Zhou, X.D. (2014) Tailoring Nanostructures in Micrometer Size Germanium Particles to Improve Their Performance as an Anode for Lithium Ion Batteries. Chemical Communications, 50, 3713-3715.
https://doi.org/10.1039/c4cc00051j
[71]  Li, X., Cheng, F., Zhang, S. and Chen, J. (2006) Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1,3,5-Benzenetribenzoate)2. Journal of Power Sources, 160, 542-547.
https://doi.org/10.1016/j.jpowsour.2006.01.015
[72]  李震东, 王振华, 张仕龙, 等. MOFs及其衍生物作为锂离子电池电极的研究进展[J]. 储能科学与技术, 2020, 9(1): 18-24.
[73]  Ferey, G., Mellotdraznieks, C., Serre, C., et al. (2005) A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309, 2040-2042.
https://doi.org/10.1126/science.1116275
[74]  Ferey, G., Latroche, M., Serre, C., et al. (2003) Hydro-gen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al3+, Cr3+), MIL-53. Chemical Communications, 24, 2976-2977.
https://doi.org/10.1039/B308903G
[75]  Li, M.C., Wang, W.X., Yang, M.Y., et al. (2015) Large-Scale Fabrication of Porous Carbon-Decorated Iron Oxide Microcuboids from Fe-MOF as High-Performance Anode Materials for Lithi-um-Ion Batteries. RSC Advances, 5, 7356-7362.
https://doi.org/10.1039/C4RA11900B
[76]  Huang, G., Zhang, F.F., Zhang, L.L., et al. (2014) Hierarchical NiFe2O4/Fe2O3 Nanotubes Derived from Metal Organic Frameworks for Superior Lithium Ion Battery Anodes. Journal of Materials Chemistry, 2, 8048-8053.
https://doi.org/10.1039/C4TA00200H
[77]  Luo, Y.M., Sun, L.X., Xu, F., et al. (2017) Porous Carbon Derived from Metalorganic Framework as an Anode for Lithium-Ion Batteries with Improved Performance. Key Engineering Materials, 727, 705-711.
https://doi.org/10.4028/www.scientific.net/KEM.727.705
[78]  Li, C., Chen, T.Q., Xu, W.J., et al. (2015) Mesopo-rous Nanostructured Co3O4 Derived from MOF Template: A High-Performance Anode Material for Lithium-Ion Batter-ies. Journal of Materials Chemistry, 3, 5585-5591.
https://doi.org/10.1039/C4TA06914E
[79]  Bai, Z.C., Zhang, Y.H., Zhang, Y.W., et al. (2015) MOFs-Derived Po-rous Mn2O3 as High-Performance Anode Material for Li-Ion Battery. Journal of Materials Chemistry, 3, 5266-5269.
https://doi.org/10.1039/C4TA06292B
[80]  Qiu, Y.C., Xu, G.L., Yan, K.Y., et al. (2011) Morphology-Conserved Transformation: Synthesis of Hierarchical Mesoporous Nanostructures of Mn2O3 and the Nanostructural Effects on Li-Ion Insertion/Deinsertion Properties. Journal of Materials Chemistry, 21, 6346-6353.
https://doi.org/10.1039/c1jm00011j
[81]  Zhang, X., Qian, Y.T., Zhu, Y.C. and Tang, K.B. (2014) Synthesis of Mn2O3 Nanomaterials with Controllable Porosity and Thickness for Enhanced Lithium-Ion Batteries Performance. Na-noscale, 6, 1725-1731.
https://doi.org/10.1039/C3NR05551E
[82]  Deng, Y.F., Li, Z., Shi, Z.N., et al. (2012) Porous Mn2O3 Microsphere as a Superior Anode Material for Lithium Ion Batteries. RSC Advances, 2, 4645-4647.
https://doi.org/10.1039/c2ra20062g
[83]  彭盼盼, 来雪琦, 韩啸, 等. 锂离子电池负极材料的研究进展[J]. 有色金属工程, 2021, 11(11): 80-91.
[84]  Qu, Q.T., Gao, T., Zheng, H.Y., et al. (2015) Graphene Oxides-Guided Growth of Ultrafine Co3O4 Nanocrystallites from MOFs as High-Performance Anode of Li-Ion Batteries. Carbon, 92, 119-125.
https://doi.org/10.1016/j.carbon.2015.03.061
[85]  Yang, D.H., Zhou, X.L., Zhong, M., et al. (2017) A Robust Hybrid of SnO2 Nanoparticles Sheathed by N-Doped Carbon Derived from ZIF-8 as Anodes for Li Ion Batteries. ChemNanoMat, 3, 252-258.
https://doi.org/10.1002/cnma.201600371
[86]  Zhang, L., Wu, H.B., Madhavi, S., et al. (2012) Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 134, 17388-17391.
https://doi.org/10.1021/ja307475c
[87]  李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[88]  揭广岸, 朱百慧, 职晓焱, 等. MOF/COF复合材料合成与应用研究进展[J]. 材料科学, 2023, 13(3): 103-110.
[89]  Hameed, A.S., Reddy, M.V., Chowdari, B.V.R. and Vittal, J.J. (2014) Carbon Coated Li3V2(PO4)3 from the Single-Source Precursor, Li2(VO)2(HPO4)2(C2O4)?6H2O as Cathode and Anode Materials for Lithium Ion Batteries. Electrochimica Acta, 128, 184-191.
https://doi.org/10.1016/j.electacta.2013.10.189
[90]  Zhang, Z.Y., Yoshikawa, H. and Awaga, K. (2014) Monitoring the Solid-State Electrochemistry of Cu (2, 7-AQDC) (AQDC = Anthraquinone Dicarboxylate) in a Lithium Battery: Co-existence of Metal and Ligand Redox Activities in a Metal-Organic Framework. Journal of the American Chemical Soci-ety, 136, 16112-16115.
https://doi.org/10.1021/ja508197w
[91]  Shin, J., Kim, M., Cirera, J., et al. (2015) MIL-101(Fe) as a Lithium-Ion Battery Electrode Material: A Relaxation and Intercalation Mechanism during Lithium Insertion. Journal of Materials Chemistry, 3, 4738-4744.
https://doi.org/10.1039/C4TA06694D
[92]  Shen, L., Wang, Z.X. and Chen, L.Q. (2014) Prussian Blues as a Cathode Material for Lithium Ion Batteries. Chemistry, 20, 12559-12562.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133