全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Numerical Analysis of Ultra-High Negative Dispersion, Highly Birefringent Nonlinear Single Mode Core-Tune Photonic Crystal Fiber (CT-PCF) over Communication Bands

DOI: 10.4236/opj.2023.1310021, PP. 227-242

Keywords: Negative Dispersion, Birefringence, Confinement Loss, HOMER Method, Single-Mode Performance, Optical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10-2 at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 104 at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W-1?Km-1 for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm?km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.

References

[1]  Zolla, F., Renversez, G., Nicolet, A., Kuhlmey, B., Guenneau, S.R. and Felbacq, D. (2005) Foundations of Photonic Crystal Fibres. World Scientific, Singapore, 376.
https://doi.org/10.1142/p367
[2]  Markos, C., Travers, J.C., Abdolvand, A., Eggleton, B.J. and Bang, O. (2017) Hybrid Photonic-Crystal Fiber. Reviews of Modern Physics, 89, Article ID: 045003.
https://doi.org/10.1103/RevModPhys.89.045003
[3]  Habib, M.S., Habib, M.S, Razzak, S.A. and Hossain, M.A. (2013) Proposal for Highly Birefringent Broadband Dispersion Compensating Octagonal Photonic Crystal Fiber. Optical Fiber Technology, 19, 461-467.
https://doi.org/10.1016/j.yofte.2013.05.014
[4]  Kaijage, S.F., Namihira, Y., Hai, N.H., Begum, F., Razzak, S.A., Kinjo, T., Miyagi, K. and Zou, N. (2009) Broadband Dispersion Compensating Octagonal Photonic Crystal Fiber for Optical Communication Applications. Japanese Journal of Applied Physics, 48, Article ID 052401.
https://doi.org/10.1143/JJAP.48.052401
[5]  Agrawal, A., Kejalakshmy, N., Chen, J., Rahman, B.M.A. and Grattan, K.T.V. (2008) Golden Spiral Photonic Crystal Fiber: Polarization and Dispersion Properties. Optics Letters, 3, 2716-2718.
https://doi.org/10.1364/OL.33.002716
[6]  Halder, A. (2016) Highly Birefringent Photonic Crystal Fiber for Dispersion Compensation over E + S + C + L Communication Bands. 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, 13-14 May 2016, 1099-1103.
https://doi.org/10.1109/ICIEV.2016.7760169
[7]  Ali, M.S., Nasim, K.M., Ahmad, R., Khan, M.A.G. and Habib, M.S. (2013) A Defected Core Highly Birefringent Dispersion Compensating Photonic Crystal Fiber. 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE), Dkaka, 19-21 December 2013, 100-105.
https://doi.org/10.1109/ICAEE.2013.6750313
[8]  Habib, M.S., Rana, M.S., Moniruzzaman, M., Ali, M.S. and Ahmed, N. (2014) Highly Birefringent Broadband-Dispersion-Compensating Photonic Crystal Fibre over the E + S + C + L + U Wavelength Bands. Optical Fiber Technology, 20, 527-532.
https://doi.org/10.1016/j.yofte.2014.06.004
[9]  Islam, M.A., Ahmad, R., Ali, M.S. and Nasim, K.M. (2014) Proposal for Highly Residual Dispersion Compensating Defected Core Decagonal Photonic Crystal Fiber over S + C + L + U Wavelength Bands. Optical Engineering, 53, Article ID: 076106.
https://doi.org/10.1117/1.OE.53.7.076106
[10]  Kim, S.E., Kim, B.H., Lee, C.G., Lee, S., Oh, K. and Kee, C.S. (2012) Elliptical Defected Core Photonic Crystal Fiber with High Birefringence and Negative Flattened Dispersion. Optics Express, 20, 1385-1391.
https://doi.org/10.1364/OE.20.001385
[11]  Ali, S., Ahmed, N., Islam, M., Aljunid, S.A., Ahmed, B.B., Hussain, S. and Rahman, E. (2016) A High Birefringent PCF with RDS Matched Dispersion Compensation over S + C + L Communication Bands. 2016 3rd International Conference on Electronic Design (ICED), Phuket, 11-12 August 2016, 136-140.
https://doi.org/10.1109/ICED.2016.7804623
[12]  Paul, B.K., Ahmed, K., Rani, M.T., Pradeep, K.S. and Al-Zahrani, F.A. (2022) Ultra-High Negative Dispersion Compensating Modified Square Shape Photonic Crystal Fiber for Optical Broadband Communication. Alexandria Engineering Journal, 61, 2799-2806.
https://doi.org/10.1016/j.aej.2021.08.006
[13]  Pandey, S.K., Dwivedi, P., Singh, S. and Prajapati, Y.K. (2022) Design of a Dispersion Compensating Hexagonal Photonic Crystal Fiber (DC-HPCF) for High Nonlinearity and Birefringence. In: Angrisani, L., Arteaga, M.A., Chakraborty, S., et al., Eds. Advances in VLSI, Communication, and Signal Processing: Select Proceedings of VCAS 2021, Springer Nature Singapore, Singapore, 187-199.
https://doi.org/10.1007/978-981-19-2631-0_17
[14]  Agrawal, G.P. (2004) Lightwave Technology: Components and Devices (Vol. 1). John Wiley & Sons, Hoboken.
[15]  Gu, S., Wang, X., Jia, H., Xing, Z. and Lou, S. (2022) Single-Mode Bend-Resistant Hollow-Core Fiber with Multi-Size Anti-Resonant Elements. Infrared Physics & Technology, 123, Article ID: 104159.
https://doi.org/10.1016/j.infrared.2022.104159
[16]  Guo, S., Wu, F., Albin, S., Tai, H. and Rogowski, R.S. (2004) Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method. Optics Express, 12, 3341-3352.
https://doi.org/10.1364/OPEX.12.003341
[17]  Poli, F., Cucinotta, A., Selleri, S. and Bouk, A.H. (2004) Tailoring of Flattened Dispersion in Highly Nonlinear Photonic Crystal Fibers. IEEE Photonics Technology Letters, 16, 1065-1067.
https://doi.org/10.1109/LPT.2004.824624
[18]  Piliarik, M., Homola, J., Manıková, Z. and Čtyroky, J. (2003) Surface Plasmon Resonance Sensor Based on a Single-Mode Polarization-Maintaining Optical Fiber. Sensors and Actuators B: Chemical, 90, 236-242.
https://doi.org/10.1016/S0925-4005(03)00034-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413