全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Evaluation of the Physicochemical, Structural and Morphological Properties of Selected Tropical Wood Species for Possible Utilization in the Wood Industry

DOI: 10.4236/jsbs.2023.134008, PP. 131-148

Keywords: Wood Plastic Composites, Density, Water Absorption Capacity, Cellulose, Sustainability

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work investigated and quantified the physicochemical, structural and morphological properties of four (4) tropical timbers as precursor raw materials for possible utilization in the wood plastic industry. The physicochemical properties of the wood samples such as the bulk and tapped density, moisture content, water absorption capacity at 25°C, volatile content, fixed carbon, ash content, alpha cellulose, hemicellulose, lignin, and extractives contents were determined using standard methods like the European Committee for Standardization and (CEN/TS) and the American Society for Testing Materials (ASTM) standards. The structural and morphological properties of the samples were examined with Fourier Infrared Transform (FTIR) spectroscopy and scanning electron microscope (SEM). Results indicated that the bulk density values of the timbers ranged from 0.34 g/cm3 in Brachystegia eurycoma (W3) to 0.47 g/cm3 in Erythrophleum suaveolens (W2), with the other timbers, Nuclea diderichii (W1) and Prosopis africana (W4) having the same bulk density of 0.40 g/cm3. With respect to their moisture content, W2 had the highest value (8.38%) while Nauclea diderrichii had the lowest value (6.52%). The water absorption capacities of the woods studied correlated with the cellulose composition of wood in the order of: W3 > W1 > W4 > W2. The FTIR results showed that W2 and W3 presented a slightly more prominent and broader band than the other woods at 1731 cm-1, in agreement with the higher holocellulose content of these species, while W2 and W4 presented the most prominent peaks indicating higher lignin content than W1 and W3. The SEM micrographs of the wood flour samples investigated indicated that the surfaces of the woods were rough and heterogeneous with irregular crystal and brick shaped particles. A two-way analysis of variance (ANOVA) carried out with respect to the chemical composition of the wood samples indicated that there was no statistically significant variation in the wood

References

[1]  Chaharmahali, M., Tajvidi, M. and Najafi, S.K. (2008) Mechanical Properties of Wood Plastic Composite Panels Made from Waste Fiberboard and Particleboard. Polymer Composites, 29, 606-610.
https://doi.org/10.1002/pc.20434
[2]  Rahman, K.S., Islam, M.N., Hannan, M.O., Dungani, R. and Abdul Khalil, H.P.S. (2013) Flat Pressed Wood Plastic Composites from Saw Dust and Recycled Polyethylene Terephthalate (PET): Physical and Mechanical Properties. SpringerPlus, 2, Article No. 629.
https://doi.org/10.1186/2193-1801-2-629
[3]  Arnandha, Y., Satyarno, I., Awaludin, A., Irawati, I.S., Prasetya, Y., Prayitno, D.A., Winata, D.C., Satrio, M.H. and Amalia, A. (2017) Physical and Mechanical Properties of WPC Board from Sengon Sawdust and Recycled HDPE Plastic. Procedia Engineering, 171, 695-704.
https://doi.org/10.1016/j.proeng.2017.01.412
[4]  Poletto, M., Zattera, A.J. and Santana, R.M.C. (2012) Structural Differences between Wood Species: Evidence from Chemical Composition, FTIR Spectroscopy and Thermogravimetric Analysis. Journal of Applied Polymer Science, 126, 337-344.
https://doi.org/10.1002/app.36991
[5]  Durmaz, S. (2022) Effect of Wood Flour Content on the Properties of Flat Pressed Wood Plastic Composites. Wood Research, 67, 302-310.
https://doi.org/10.37763/wr.1336-4561/67.2.302310
[6]  Ayrilmis, N., Benthien, J.T., Thoemen, H. and White, R.H. (2011) Properties of Flat-Pressed Wood Plastic Composites Containing Fire Retardants. Journal of Applied Polymer Science, 122, 3201-3210.
https://doi.org/10.1002/app.34346
[7]  Rydzkowski, T. and Michalska-Pożoga, I. (2016) Analysis of Intensity of Changes in the Moisture Content of Wood Chips in the Production of Wood Polymer Composites during Drying and Storage Processes. Wood Research, 61, 457-464.
[8]  Woldesenbet, E., Gupta, N. and Vinson, J.R. (2002) Determination of Moisture Effects on Impacts of Properties of Composite Materials. Journal of Materials Science, 37, 2693-2698.
https://doi.org/10.1023/A:1015864932198
[9]  Faure, F., Perrot, A., Pimbert, S. and Lecompte, T. (2019) Water Absorption Measurements on WPCs: Assessment of Size and Direction Dependencies in Order to Design Fast and Accurate Quality Control Tests. Polymer Testing, 77, Article ID: 105899.
https://doi.org/10.1016/j.polymertesting.2019.105899
[10]  Stark, N.M. (2005) Changes in Wood Flour/HDPE Composites after Accelerated Weathering with and without Water Spray. Proceedings of the 2nd Wood Fibre Polymer Composites Symposium: Applications and Perspectives, Bordeaux, 24-25 March 2005, 79-87.
[11]  Joseph, K., Thomas, S. and Pavithran, C. (1995) Effect of Ageing on the Physical and Mechanical Properties of Sisal-Fiber-Reinforced Polyethylene Composites. Composite Science and Technology, 53, 99-110.
https://doi.org/10.1016/0266-3538(94)00074-3
[12]  Panthapulakkal, S. and Sain, M. (2007) Injection-Molded Short Hemp Fiber/Glass Fiber-Reinforced Polypropylene Hybrid Composites—Mechanical, Water Absorption and Thermal Properties. Journal of Applied Polymer Science, 103, 2432-2441.
https://doi.org/10.1002/app.25486
[13]  Dhakal, H.N., Zhang, Z.Y. and Richardson, M.O.W. (2007) Effect of Water Absorption on the Mechanical Properties of Hemp Fibre Reinforced Unsaturated Polyester Composites. Composites Science Technology, 67, 1674-1683.
https://doi.org/10.1016/j.compscitech.2006.06.019
[14]  Stark, N.M. (2001) Influence of Moisture Absorption on Mechanical Properties of Wood Flour-Polypropylene Composites. Journal of Thermoplastic Composite Materials, 14, 421-432.
https://doi.org/10.1106/UDKY-0403-626E-1H4P
[15]  Ndiaye, D., Gueye, M. and Diop, B. (2013) Characterization, Physical and Mechanical Properties of Polypropylene/Wood-Flour Composites. Arabian Journal for Science and Engineering, 38, 59-68.
https://doi.org/10.1007/s13369-012-0407-y
[16]  Javier, C., Sergio, A., Jorge, D. and Roberto, Z. (2015) Optimization of the Tensile Strength of a Wood-PET Composite. Ingenieria Investigacion y Tecnologia, 16, 105-112.
https://doi.org/10.1016/S1405-7743(15)72111-6
[17]  Wei, L., Armando, G.M., Camille, F. and Jeffrey, J.M. (2013) Effects of Wood Fiber Esterification on Properties, Weatherability and Biodurability of Wood Plastic Composites. Journal of Polymer Degradation and Stability, 98, 1348-1361.
https://doi.org/10.1016/j.polymdegradstab.2013.03.027
[18]  Sotelo-Montes, C., Garcia, R.A., Da Silva, D.A., De Muniz and Weber, W.C. (2010) Variation and Correlation in Traits of Prosopis africana and Balanites aegyptiaca in the West African Sahel: Implications for Tree Domestication Programs. Forests, Trees and Livelihoods, 19, 289-298.
https://doi.org/10.1080/14728028.2010.9752672
[19]  Martinez-Lopez, Y., Paes, J.B., Gonçalves, F.G., Martínez-Rodríguez, E. and Medeiros Neto, P.N. (2020) Physico-Mechanical Properties of Wood-Plastic Produced with Forest Species and Thermoplastic Materials. Floresta e Ambiente, 27, e20170736.
https://doi.org/10.1590/2179-8087.073617
[20]  ASTM D4442: Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials.
https://www.intertek.com/building/standards/astm-d4442/
[21]  Dara, S.S. (1991) Experiments and Calculations in Engineering Chemistry. S. Chand and Co. Ltd., New Delhi, 185-191.
[22]  Aloko, D.F. and Adebayo, G.A. (2007) Production and Characterization of Activated Carbon from Agricultural Wastes (Rice Husk and Corn Cob). Journal of Engineering and Applied Sciences, 2, 440-444.
[23]  CEN/TS 15103:2005 (Main) Solid Biofuels-Methods for the Determination of Bulk Density.
https://standards.iteh.ai/catalog/standards/cen/bed1b27b-01fa-4448-9213-d4325b23213b/cen-ts-15103-2005
[24]  Asouzu, A.I., Oly-Alawuba, N.M. and Umerah, N.N. (2020) Functional, Properties & Chemical Composition of Composite Flour Made from Cooking Banana (Musa paradisiaca) and Yellow Maize (Zea mays). Research Journal of Food and Nutrition, 4, 6-12.
https://doi.org/10.22259/2637-5583.0402002
[25]  Rowell, R.M., Petterson, R. and Tsabalala, M.A. (2013) Cell Wall Chemistry. In: Rowell, R.M., Ed., Handbook of Wood Chemistry and Wood Composites, CRC Press, Taylor & Francis Group, Boca Raton, 33-72.
https://doi.org/10.1201/b12487-5
[26]  Abdullah, E.C. and Geldart, D. (1999) The Use of Bulk Density Measurements as Flowability Indicators. Journal of Powder and Technology, 102, 151-165.
https://doi.org/10.1016/S0032-5910(98)00208-3
[27]  Wheeler, E., Baas, P. and Gasson, P.E. (1989) International Association of Wood Anatomists (IAWA) List of Microscopic Features for Hardwood Identification. IAWA Bull. n. ser. 10(3), S. 219 bis 332, 190 Abb., Leiden.
[28]  Djomo, A.N., Guylène, N., Zapfack, L. and Chimi, C.D. (2017) Variation of Wood Density in Tropical Rainforest Trees. Journal of Forests, 4, 16-26.
https://doi.org/10.18488/journal.101.2017.42.16.26
[29]  Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M. and Saint-André, L. (2010) Wood Density, Phytomass Variations within and among Trees, and Allometric Equations in a Tropical Rainforest of Africa. Forest Ecology and Management, 260, 1375-1388.
https://doi.org/10.1016/j.foreco.2010.07.040
[30]  Fayolle, A., Doucet, J.L., Gillet, J.F., Bourland, N. and Lejeune, P. (2013) Tree Allometry in Central Africa: Testing the Validity of Pantropical Multi-Species Allometric Equations for Estimating Biomass and Carbon Stocks. Forest Ecology and Management, 305, 29-37.
https://doi.org/10.1016/j.foreco.2013.05.036
[31]  Martín, J.A. and López, R. (2023) Biological Deterioration and Natural Durability of Wood in Europe. Forests, 14, Article No. 283.
https://doi.org/10.3390/f14020283
[32]  Morris, P.I. and Winandy, J.E. (2002) Limiting Conditions for Decay in Wood Systems. The 33rd Annual Meeting of the International Research Group on Wood Preservation, Cardiff, 12-17 May 2002, 1-11.
https://www.fpl.fs.usda.gov/documnts/pdf2002/morri02a.pdf
[33]  Trada Technology (2011) Moisture in Timber.
https://www.woodcomponents.ie/wp-content/uploads/2016/03/Trada-Moisture-in-Timber.pdf
https://www.trada.co.uk
[34]  Mohammadi, B. and Nokken, M. (2013) Influence of Moisture Content on Water Absorption in Concrete. Proceedings, Annual Conference-Canadian Society for Civil Engineering, 5, 4092-4100.
[35]  Sargent, R. (2019) Evaluating Dimensional Stability in Solid Wood: A Review of Current Practice. Journal of Wood Science, 65, 1-11.
https://doi.org/10.1186/s10086-019-1817-1
[36]  Sahu, P. and Gupta, M. (2022) Water Absorption Behavior of Cellulosic Fibres Polymer Composites: A Review on Its Effects and Remedies. Journal of Industrial Textiles, 51, 7480S-7512S.
https://doi.org/10.1177/1528083720974424
[37]  Awasthi, B. (2023) Chemical Properties of Wood.
https://forestrybloq.com/chemical-properties-of-wood/
[38]  García, R., Pizarro, C., Lavín, A.G. and Bueno, J.L. (2012) Characterization of Spanish Biomass Wastes for Energy Use. Journal of Bioresource Technology, 103, 249-258.
https://doi.org/10.1016/j.biortech.2011.10.004
[39]  McCoy Mart (2023) Advantages and Disadvantages of WPC Boards.
https://mccoymart.com/post/advantages-disadvantages-of-wpc-board/
[40]  Pereira, B., Oliveira, A., Márcia, A., Carneiro, A., Santos, L. and Vital, B. (2012) Quality of Wood and Charcoal from Eucalyptus Clones for Ironmaster Use. International Journal of Forestry Research, 2012, Article ID: 523025.
https://doi.org/10.1155/2012/523025
[41]  Demirbas, A. (2008) Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Springer, London, 21-22.
https://doi.org/10.1016/S1351-4180(08)70586-5
[42]  Susott, R.A., DeGroot, W.F. and Shafizadeh, F. (1975) Heat Content of Natural Fuels. Journal of Fire and Flammability, 6, 311-325.
[43]  Morel-Rouhier, M. (2021) Wood as a Hostile Habitat for Ligninolytic Fungi. In: Morel-Rouhier, M. and Rodnay Sormani, R., Eds., Advances in Botanical Research, Vol. 99, Academic Press, Cambridge, 115-149.
https://doi.org/10.1016/bs.abr.2021.05.001
[44]  Syofuna, A., Banana, A.Y. and Nakabonge, G. (2012) Efficiency of Natural Wood Extractives as Wood Preservatives against Termite Attack. Maderas: Ciencia y Tecnología, 14, 155-163.
https://doi.org/10.4067/S0718-221X2012000200003
[45]  Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., Van Grisen, H. and Grizetti, B. (2011) The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press, London, 47.
http://books.google.com.ng/books/isbn=1139501372
https://doi.org/10.1017/CBO9780511976988
[46]  Yokoi, H., Nakase, T., Goto, K., Ishida, Y., Ohtani, H., Tsuge, S., Sonoda, T. and Ona, T. (2003) Rapid Characterization of Wood Extractives in Wood by Thermal Desorption-Gas Chromatography in the Presence of Tetramethylammonium Acetate. Journal of Analytical and Applied Pyrolysis, 67, 191-200.
https://doi.org/10.1016/S0165-2370(02)00061-X
[47]  Ishida, Y., Goto, K., Yokoi, H., Tsuge, S., Ohtani, H., Sonoda, T. and Ona, T. (2007) Direct Analysis of Phenolic Extractives in Wood by Thermochemolysis-Gas Chromatography in the Presence of Tetrabutylammonium Hydroxide. Journal of Analytical and Applied Pyrolysis, 78, 200-206.
https://doi.org/10.1016/j.jaap.2006.06.009
[48]  Popescu, C.M., Popescu, M.C., Singurel, G., Vasile, C., Argyropoulos, D.S. and Willfor, S. (2007) Spectral Characterization of Eucalyptus Wood. Journal of Applied Spectroscopy, 61, 1168-1177.
https://doi.org/10.1366/000370207782597076
[49]  Schwanninger, M., Rodriguez, J.C., Pereira, H. and Hinterstoisser, B. (2004) Effects of Short-Time Vibratory Ball Milling on the Shape of FT-IR Spectra of Wood and Cellulose. Vibrational Spectoscopy, 36, 23-40.
https://doi.org/10.1016/j.vibspec.2004.02.003
[50]  Pandey, S.N. and Trivedi, P.S. (1977) A Textbook of Botany. Vikas, New Delhi, 367-375.
[51]  Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H. and Youk, J.H. (2005) Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydrate Research, 340, 2376-2391.
https://doi.org/10.1016/j.carres.2005.08.007
[52]  Akerholm, M., Hinterstoisser, B. and Salmen, L. (2003) Characterization of the Crystalline Structure of Cellulose Using Static and Dynamic FT-IR Spectroscopy. Carbohydrate Research, 339, 569-578.
https://doi.org/10.1016/j.carres.2003.11.012
[53]  Nelson, M.L. and O’Connor, R.T. (1964) Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II. Journal of Applied Polymer Science, 71, 1325-1341.
https://doi.org/10.1002/app.1964.070080323
[54]  Carrilo, F., Colom, X., Sunol, J.J. and Saurina, J. (2004) Structural FTIR Analysis and Thermal 43. Characterisation of Lyocell and Viscose-Type Fibres. European Polymer Journal, 40, 2229-2234.
https://doi.org/10.1016/j.eurpolymj.2004.05.003
[55]  Gomez Yepes, M.E. and Cremades, L.V. (2011) Characterization of Wood Dust from Furniture by Scanning Electron Microscopy and Energy-Dispersive X-Ray Analysis. Journal of Industrial Health, 49, 492-500.
https://doi.org/10.2486/indhealth.MS1204

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413