全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Allowance of the Emission Quota Using Life Cycle Assessment for the Creation of a National Carbon Market: Framework Developed for Hydroelectric Projects in Cameroon

DOI: 10.4236/ajcc.2023.124023, PP. 505-526

Keywords: Carbon Market, Sustainable Infrastructure, Reference Value, Emission, Hydroelectricity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lack of synergy between infrastructure financing mechanisms and mechanisms for combating climate change does not favor the definition of sustainable infrastructure in Cameroon. The definition of a sustainable infrastructure could meet the requirements of these mechanisms, thanks to the control of Greenhouse Gas (GHG) emissions during its installation, in relation to a predefined value. However, the promotion of efforts to reduce emissions from new infrastructures is not subject to a local market. This situation is a limit in the implementation of the policies defined in the Nationally Determined Contribution (NDC). This article proposes a framework for promoting reduction efforts for a national carbon market, in favor of hydroelectric infrastructures. Thanks to the Life Cycle Assessment (LCA) environmental assessment tool, we are going to determine the carbon quota for a specific power. The study carried out on the hydroelectric power station of Mekin (HydroMekin) leads us to a reduction effort of 68.2% compared to the threshold defined at 14.057 gCO2eq/kWhe. The framework, developed, contributes to defining the environmental parameters in the decarbonation strategy during the implementation of new hydroelectric infrastructures and the market carbon design elements special to the construction phase of these infrastructures.

References

[1]  Adrianto, L. R., Van Der Hulst, M. K., Tokaya, J. P., Arvidsson, R., Blanco, C. F. et al. (2021). How Can LCA Include Prospective Elements to Assess Emerging Technologies and System Transitions? The 76th LCA Discussion Forum on Life Cycle Assessment, 19 November 2020. The International Journal of Life Cycle Assessment, 26, 1541-1544.
https://doi.org/10.1007/s11367-021-01934-w
[2]  Alberola, E., & Chevalier, J. (2009). European Carbon Prices and Banking Restrictions: Evidence from Phase I (2005-2007). Energy Journal, 30, 51-79.
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol30-No3-3
[3]  Assefa, G., & Ramjeawon, T. (2019). Life-Cycle Management for Sustainable Infrastructure Planning and Development in Africa. In D. Mebratu, & M. Swilling (Eds.), Transformational Infrastructure for Development of a Wellbeing Economy in Africa (pp. 189-228). African Sun Media.
https://doi.org/10.18820/9781928480419/06
[4]  Chang, K., Chen, R., & Chevalier, J. (2018). Market Fragmentation, Liquidity Measures and Improvement Perspectives from China’s Emission Trading Scheme Pilots. Energy Economics, 75, 249-260.
https://doi.org/10.1016/j.eneco.2018.07.010
[5]  Chirambo, D. (2018). Towards the Achievement of SDG 7 in Sub-Saharan Africa: Creating Synergies between Power Africa, Sustainable Energy for All and Climate Finance In-Order to Achieve Universal Energy Access before 2030. Renewable and Sustainable Energy Reviews, 94, 600-608.
https://doi.org/10.1016/j.rser.2018.06.025
[6]  Dones, R., Heck, T., & Hirschberg, S. (2004). Greenhouse Gas Emissions from Energy Systems, Comparison and Overview. Encyclopedia of Energy, 2004, 77-95.
https://doi.org/10.1016/B0-12-176480-X/00397-1
[7]  ETDEWEB (2023). Life Cycle Analysis of Power Generation Systems.
http://www.osti.gov/etdeweb/biblio/168666
[8]  Finnveden, G., Hauschild, M., Ekwall, T., Guinée, J., Heijungs, R., Hellweg, S. et al. (2009). Recent Developments in Life Cycle Assessment. Journal of Environment Management, 91, 1-21.
https://doi.org/10.1016/j.jenvman.2009.06.018
[9]  Flachsland, C., Marschinski, R., & Edenhofer, O. (2009). To Link or Not to Link: Benefits and Disadvantages of Linking Cap-and-Trade Systems. Climate Policy, 9, 358-372.
https://doi.org/10.3763/cpol.2009.0626
[10]  Gagnon, & van de Vate, J. (1997). Greenhouse Gas Emissions from Hydropower: The State of Research in 1996. Energy Policy, 25, 7-13.
https://doi.org/10.1016/S0301-4215(96)00125-5
[11]  Han, R., Yu, B., Tang, B., Liao, H., & Wei, Y. (2017). Carbon Emissions Quotas in the Chinese road Transport: A Carbon Trading Perspective. Energy Policy, 106, 298-309.
https://doi.org/10.1016/j.enpol.2017.03.071
[12]  Hanafi, J., & Riman, A. (2015). Life Cycle Assessment of a Mini Hydro Power Plant in Indonesia: A Case Study in Karai River. Procedia CIRP, 29, 444-449.
https://doi.org/10.1016/j.procir.2015.02.160
[13]  Harbi, S., Margni, M., Loerincik, Y., & Dettling, J. (2015). Life Cycle Management as a Way to Operationalize Sustainability within Organizations. In G. Sonnemann, & M. Margni (Eds.), Life Cycle Management (pp. 23-33). Springer.
https://doi.org/10.1007/978-94-017-7221-1_3
[14]  He, K., Wang, L., & Li, X. Y. (2020). Review of the Energy Consumption and Production Structure of China’s Steel Industry: Current Situation and Future Development. Metals, 10, Article 302.
https://doi.org/10.3390/met10030302
[15]  Hendrickson, C., Arpad, H., Joshi, S., & Lave, L. (1998). Economic Input-Output Models for Environmental Life Cycle Assessment. Environmental Science and Technology, 32, 184A-191A.
https://doi.org/10.1021/es983471i
[16]  Horvath, A. (2005). Decision-Making in Electricity Generation Based on Global Warming Potential and Lifecycle Assessment for Climate Change. University of California Energy Institute.
[17]  Hua, Y. F., & Dong, F. (2019). China’s Carbon Market Development and Carbon Market Connection: A Literature Review. Energies, 12, Article 1663.
https://doi.org/10.3390/en12091663
[18]  IPPC (2006). Intergovernmental Panel on Climate Change.
https://www.ipcc-nggip.iges.or.jp/
[19]  ISO 14040 (2006). EN ISO 14040 Environmental Management, Life Cycle Assessment, Principles and Framework.
[20]  Joshi, S. (1999). Product Environmental Life Cycle Assessment Using Input-Output Techniques. Journal of Industrial Ecology, 3, 95-120.
https://doi.org/10.1162/108819899569449
[21]  Karamoko (2018). Les priorités de la lutte contre le changement climatique en Afrique.
https://www.ena.fr/content/download/59673/944325/version/3/file/PR%20ENA%20AGP%2020180303%25Gban%C3%A9.pdf
[22]  Kpewoan II, J. K., & Elkiran, G. (2022). A Study Reviewed on Climate Change Adaptation Techniques for Hydropower Expansion in Sub-Sahara Africa. Reviewed Journals International, 3, 1-14.
[23]  Kyoto (1997). United Nations Framework Convention on Climate Change.
https://unfccc.int/resource/docs/convkp/kpfrench.pdf
[24]  Lehmann, A., Finkbeiner, M., Broadbent, C., & Balzer, R. T. (2015). Policy Options for Life Cycle Assessment Deployment in Legislation. In G. Sonnemann, & M. Margni (Eds.), Life Cycle Management (pp. 213-224). Springer.
https://doi.org/10.1007/978-94-017-7221-1_15
[25]  Li, W., Zhang, Y., & Lu, C. (2018). The Impact on Electric Power Industry under the Implantation of National Carbon Trading Market in China: A Dynamic CGE Analysis. Journal of Cleaner Production, 200, 511-523.
https://doi.org/10.1016/j.jclepro.2018.07.325
[26]  Liu, L., Chen, C., Zhao, Y., & Zhao, E. (2015). China’S Carbon-Emissions Trading: Overview, Challenges and Future. Renewable and Sustainable Energy Reviews, 49, 254-266.
https://doi.org/10.1016/j.rser.2015.04.076
[27]  Meier, P. J., Wilson, P., Kulcinski, G. L., & Denholm, P. L. (2005). US Electric Industry Response to Carbon Constraint: A Life Cycle Assessment of Supply Side Alternatives. Energy Policy, 33, 1099-1108.
https://doi.org/10.1016/j.enpol.2003.11.009
[28]  Michaelowa, A., Herwille, L., Obergassel, W., & Butzengeiger, S. (2019). Additionality Revisited: Guarding the Integrity of Market Mechanisms under the Paris Agreement. Climate Policy, 19, 1211-1224.
https://doi.org/10.1080/14693062.2019.1628695
[29]  Michaja, P., Arvesen, A., Humpenoder, F., Popp, A., Hertwich, E. G., & Luderer, G. (2017). Understanding Future Emissions from Low-Carbon Power Systems by Integration of Life Cycle Assessment and Integrated Energy Modelling. Nature Energy, 12, 939-945.
https://doi.org/10.1038/s41560-017-0032-9
[30]  MINEPAT (2020). Stratégie Nationale de Développement à l’horizon 2030 (SND-30). Yaoundé.
http://minepat.gov.cm/snd30
[31]  MINEPDED (2013). Ministry of the Environment, Nature Protection and Sustainable Development of Cameroon.
https://minepded.gov.cm/wp-content/uploads/2020/01/D%C3%89CRET-N%C2%B020130171PM-DU-14-F%c3%89VRIER-2013-FIXANT-LES-MODALIT%c3%89S-DE-R%c3%89ALISATION-DES-%c3%89TUDES-D%e2%80%99IMPACT-ENVIRONNEMENTAL-ET-SOCIAL.pdf
[32]  Minkov, N., Finkbeiner, M., Sfez, S., Dewulf, J., Manent, A., Rother, E. et al. (2020). Background Document Supplementing the Roadmap for Sustainability Assessment in European Process Industries: Current State of Life Cycle Sustainability (LCSA). Technical University of Berlin.
[33]  Motuziene, V., Ciuprinska, K., Rogoza, A., & Lapinskiene, V. (2022). A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies. Energies, 15, 84-88.
https://doi.org/10.3390/en15228488
[34]  NDC (2021). Nationally Determined Contribution of Cameroon.
https://unfccc.int/sites/default/files/NDC/2022-06/CDN%20r%C3%A9vis%C3%A9e%20CMR%20finale%20sept%202021.pdf
[35]  Noah, M. W., Tom, A., & Hamandjoda, O. (2021). Methodological Approach to Regulating CO2eq Emissions from Major Energy Transition Projects in Sub-Saharan Africa: The Case of Hydroelectricity. Journal of Energy and Power Engineering, 15, 58-67.
https://doi.org/10.17265/1934-8975/2021.02.003
[36]  Noburu, N., Inaba, A., & Tonooka, Y. (2001). Life-Cycle Emission of Oxidic Gases from Power-Generation Systems. Applied Energy, 68, 215-227.
https://doi.org/10.1016/S0306-2619(00)00046-5
[37]  OECD (2021). Purchasing Power Parities (PPP).
https://doi.org/10.1787/1290ee5a-en
[38]  Olin, L. (2018). Towards Sustainable Project Management: A Life Cycle Approach to Evaluate the Biopharmaceutical Industry. KTH Royal Institute of Technology.
https://www.diva-portal.org/smash/get/diva2:1477911/FULLTEXT01.pdf
[39]  Paris. (2015). United Nations Framework Convention on Climate Change.
https://unfccc.int/sites/default/files/french_paris_agreement.pdf
[40]  Pascale, A., Urmee, T., Humpenoder, F., & Moore, A. (2011). Life Cycle Assessment of a Community Hydroelectric Power System in Rural Thailand. Renewable Energy, 36, 2799-2808.
https://doi.org/10.1016/j.renene.2011.04.023
[41]  Schneider, L., & Theuer, S. L. (2019). Environmental Integrity of International Carbon Market Mechanism under the Paris Agreement. Climate Policy, 3, 386-400.
https://doi.org/10.1080/14693062.2018.1521332
[42]  Suwanit, W., & Gheewala, S. (2011). Life Cycle Assessment of Mini-Hydropower Plants in Thailand. International Journal of Life Cycle Assessment, 16, 849-858.
https://doi.org/10.1007/s11367-011-0311-9
[43]  Turconi, R., Boldrin, A., & Astrup, T. (2013). Life Cycle Assessment (LCA) of Electricity Generation Technologies: Overview, Comparability and Limitations. Renewable and Sustainable Energy Reviews, 28, 555-565.
https://doi.org/10.1016/j.rser.2013.08.013
[44]  UNFCCC (2021). United Nations Framework Convention on Climate Change
https://cdm.unfccc.int/methodologies/documentation/index.html
[45]  Varun, G., Prakash, R., & Bhat, I. K. (2010). Life Cycle Energy and GHG Analysis of Hydroelectric Power Development in India. International Journal of Green Energy, 17, 361-375.
https://doi.org/10.1080/15435075.2010.493803
[46]  Vattenfall (2008). Summary of Vattenfall AB Nordic Generation’s Certified Environmental Product Declaration of Electricity from Vattenfall’s Nordic Hydropower. Environmental Product Declaration S-P-00088.
[47]  Xiong, L., Shen, B., Qi, S., Price, L., & Ye, B. (2017). The Allowance Mechanism of China’s Carbon Trading Pilots: A Comparative Analysis with Schemes in EU and California. Applied Energy, 185, 1849-1859.
https://doi.org/10.1016/j.apenergy.2016.01.064
[48]  Zarfl, C., Alexander, E., Lumsdom, Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A Global Boom in Hydropower Dam Construction. Aquatic Sciences, 77, 161-170.
https://doi.org/10.1007/s00027-014-0377-0
[49]  Zhang, M., Fan, D., & Dou, Y. (2014). Analysis on EU Carbon Market Progress and Its Reference to China. Environmental Protection, 42, 64-66.
[50]  Zhang, Q. F., Karney, B., MacLean, H. L., & Feng, J. C. (2007). Life Cycle Inventory of Energy Use and Greenhouse Gas Emissions for Two Hydropower Projects in China. Journal of Infrastructure Systems, 13, 271-279.
https://doi.org/10.1061/(ASCE)1076-0342(2007)13:4(271)

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413