全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Avian Spring Arrival Dates of 115 Species in the Central Appalachians over 127 Years

DOI: 10.4236/ajcc.2023.124024, PP. 527-547

Keywords: Avian Migration, Climate Change, Historical Migration, Long-Term Dataset, Migration Phenology, Spring Arrival

Full-Text   Cite this paper   Add to My Lib

Abstract:

Global climate change affects many facets of avian ecology, such as shifts in breeding phenology and migration patterns. Migrating bird species respond to changes in climate by shifting their temporal patterns of spring migration. However, variation in species’ responses exists based on various life history traits, which exposes some species to an increased risk of phenological mismatch. This study examined the spring arrival dates of 115 migrating species over 127 years (1889-2015) using archival sources in West Virginia, USA, making this research unique in the length of study, the high number of species studied, and the historical crowd-sourced observations analyzed. Of the 115 taxa, 45 showed significant negative slopes of spring arrival dates (arriving earlier in the spring) plotted against the year. In contrast, only nine species showed positive slopes (arriving later in the spring), albeit non-significant. The average advance of spring arrival date for all species was 1.7 days per decade, and an advance of 2.6 days per decade in species that showed significance. Arrival dates were associated with increasing spring temperatures—for each 1˚C increase, the arrival date advanced by 0.81 days/decade. Several life history traits were linked to species that advanced their first arrival dates, including a shorter distance migrated to reach wintering grounds, increasing populations, and foraging habitat. Most avian species are advancing their spring arrival dates in response to climate change. However, the implications of earlier spring arrival are unclear. We draw attention to shifts in arrival dates and wintering ranges, leading to a possible increase in overwintering in the mid-latitudes of North America.

References

[1]  Ahola, M., Laaksonen, T., Sippola, K., Eeva, T., Rainio, K., & Lehikoinen, E. (2004). Variation in Climate Warming along the Migration Route Uncouples Arrival and Breeding Dates. Global Change Biology, 10, 1610-1617.
https://doi.org/10.1111/j.1365-2486.2004.00823.x
[2]  Anderson, J. T. (1997). Invertebrate Communities in Vegetated Playa Wetlands. Dissertation, Texas Tech University.
https://ttu-ir.tdl.org/handle/2346/20160
[3]  Anderson, J. T., & Chadbourne, K. A. (2015). Nesting Birds in Hawthorn-Savannah Habitats of Canaan Valley, Tucker County, West Virginia. Southeastern Naturalist, 14, 103-111.
https://doi.org/10.1656/058.014.sp730
[4]  Anderson, J. T., Zilli, F. L., Montalto, L., Marchese, M. R., McKinney, M., & Park, Y. L. (2013). Sampling and Processing Aquatic and Terrestrial Invertebrates in Wetlands. In J. T. Anderson, & C. A. Davis (Eds.), Wetland Techniques. Volume 2: Organisms (pp. 142-195). Springer.
https://link.springer.com/chapter/10.1007/978-94-007-6931-1_5
[5]  Arab, A, Courter, J. R., & Zelt, J. (2016). A Spatio-Temporal Comparison of Avian Migration Phenology Using Citizen Science Data. Spatial Statistics, 18, 234-245.
https://doi.org/10.1016/j.spasta.2016.06.006
[6]  Bailey, R. S., & Rucker, C. R. (2021). The Second Atlas of Breeding Birds of West Virginia (568 p.). Penn State University Press.
[7]  Becker, D. N., Hubbart, J. A., & Anderson, J. T. (2022). Biodiversity Monitoring of a Riparian Wetland in a Mixed-Use Watershed in the Central Appalachians, USA, before Restoration. Diversity, 14, Article No. 304.
https://doi.org/10.3390/d14040304
[8]  Bitterlin, L. R., & Van Buskirk, J. (2014). Ecological and Life History Correlates of Changes in Avian Migration Timing in Response to Climate Change. Climate Research, 61, 109-121.
https://doi.org/10.3354/cr01238
[9]  Both, C., & Visser, M. E. (2001). Adjustment to Climate Change Is Constrained by Arrival Date in a Long-Distance Migrant Bird. Nature, 411, 296-298.
https://doi.org/10.1038/35077063
[10]  Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate Change and Population Declines in a Long-Distance Migratory Bird. Nature, 441, 81-83.
https://doi.org/10.1038/nature04539
[11]  Bradley, N. L., Leopold, A. C., Ross, J., & Huffaker, W. (1999). Phenological Changes Reflect Climate Change in Wisconsin. Proceedings of the National Academy of Sciences, 96, 9701-9704.
https://doi.org/10.1073/pnas.96.17.9701
[12]  Butler, C. J. (2003). The Disproportionate Effect of Global Warming on the Arrival Dates of Short-Distance Migratory Birds in North America. Ibis, 145, 484-495.
https://doi.org/10.1046/j.1474-919X.2003.00193.x
[13]  Clipp, H. L., Peters, M. L., & Anderson, J. T. (2017). Winter Waterbird Composition and Use at Created Wetlands in West Virginia, USA. Scientifica, 2017, Article ID: 1730130.
https://www.hindawi.com/journals/scientifica/2017/1730130/
https://doi.org/10.1155/2017/1730130
[14]  Cotton, P. A. (2003). Avian Migration Phenology and Global Climate Change. Proceedings of the National Academy of Sciences, 100, 12219-12222.
https://doi.org/10.1073/pnas.1930548100
[15]  Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A., & Kaiser, E. W. (2013). Weekend Bias in Citizen Science Data Reporting: Implications for Phenology Studies. International Journal of Biometeorology, 57, 715-720.
https://doi.org/10.1007/s00484-012-0598-7
[16]  Crick, H. Q. (2004). The Impact of Climate Change on Birds. Ibis, 146, 48-56.
https://doi.org/10.1111/j.1474-919X.2004.00327.x
[17]  Ellwood, E. R., Primack, R. B., & Talmadge, M. L. (2010). Effects of Climate Change on Spring Arrival Times of Birds in Thoreau’s Concord from 1851 to 2007. The Condor, 112, 754-762.
https://doi.org/10.1525/cond.2010.100006
[18]  Forcey, G. M., & Anderson, J. T. (2002a). An Assessment of Avian Fauna on the Camp Dawson Collective Training Area, Kingwood, West Virginia. Proceedings of the West Virginia Academy of Sciences: Camp Dawson Symposium, 74, 39-55.
[19]  Forcey, G. M., & Anderson, J. T. (2002b). Variation in Bird Detection Probabilities and Abundances among Different Point Count Durations and Plot Sizes. Proceedings of the Southeastern Association of Fish and Wildlife Agencies, 56, 331-342.
[20]  Fox, J., & Weisberg, S. (2011). An R Companion to Applied Regression (2nd ed.). Sage.
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
[21]  Gill, J. A., Alves, J. A., Sutherland, W. J., Appleton, G. F., Potts, P. M., & Gunnarsson, T. G. (2014). Why Is the Timing of Bird Migration Advancing When Individuals Are Not? Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132161.
https://doi.org/10.1098/rspb.2013.2161
[22]  Gilroy, J. J., Gill, J. A., Butchart, S. H., Jones, V. R., & Franco, A. (2016). Migratory Diversity Predicts Population Declines in Birds. Ecology Letters, 19, 308-317.
https://doi.org/10.1111/ele.12569
[23]  Gwinner, E. (1996). Circannual Clocks in Avian Reproduction and Migration. Ibis, 138, 47-63.
https://doi.org/10.1111/j.1474-919X.1996.tb04312.x
[24]  Hagan, J. M., Lloyd-Evans, T. L., & Atwood, J. L. (1991). The Relationship between Latitude and the Timing of Spring Migration of North American Landbirds. Ornis Scandinavica, 22, 129-136.
https://doi.org/10.2307/3676543
[25]  IPCC (2014). Climate Change 2014: Synthesis Report. Contributions of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.
https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
[26]  Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biology, 5, e157.
https://doi.org/10.1371/journal.pbio.0050157
[27]  Jonzén, N., Lindén, A., Ergon, T., Knudsen, E., Vik, J. O., Rubolini, D., Piacentini, D., Brinch, C., Spina, F., Karlsson, L., & Stervander, M. (2006). Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds. Science, 312, 1959-1961.
https://doi.org/10.1126/science.1126119
[28]  Kahler, H. A., & Anderson, J. T. (2006). Tree Cavity Resources for Dependent Cavity-Using Wildlife in the Southern Allegheny Mountains. Northern Journal of Applied Forestry, 23, 114-121.
https://doi.org/10.1093/njaf/23.2.114
[29]  Kelly, J. F., Horton, K. G., Stepanian, P. M., Beurs, K. M., Fagin, T., Bridge, E. S., & Chilson, P. B. (2016). Novel Measures of Continental-Scale Avian Migration Phenology Related to Proximate Environmental Cues. Ecosphere, 7, e01434.
https://doi.org/10.1002/ecs2.1434
[30]  Kerby, D. S. (2014). The Simple Difference Formula: An Approach to Teaching Nonparametric Correlation. Comprehensive Psychology, 3, Article No. 1.
https://doi.org/10.2466/11.IT.3.1
[31]  Kerby, J. T., & Post, E. (2013). Advancing Plant Phenology and Reduced Herbivore Production in a Terrestrial System Associated with Sea Ice Decline. Nature Communications, 4, Article No. 2514.
https://doi.org/10.1038/ncomms3514
[32]  Kullberg, C., Fransson, T., Hedlund, J., Jonzén, N., Langvall, O., Nilsson, J., & Bolmgren, K. (2015). Change in Spring Arrival of Migratory Birds under an Era of Climate Change, Swedish Data from the Last 140 Years. Ambio, 44, 69-77.
https://doi.org/10.1007/s13280-014-0600-1
[33]  La Sorte, F. A., Hochachka, W. M., Farnsworth, A., Dhondt, A. A., & Sheldon, D. (2016). The Implications of Mid-Latitude Climate Extremes for North American Migratory Bird Populations. Ecosphere, 7, e01261.
https://doi.org/10.1002/ecs2.1261
[34]  Langham, G. M., Schuetz, J. G., Distler, T., Soykan, C. U., & Wilsey, C. (2015). Conservation Status of North American Birds in the Face of Future Climate Change. PLOS ONE, 10, e0135350.
https://doi.org/10.1371/journal.pone.0135350
[35]  Marra, P. P., Francis, C. M., Mulvihill, R. S., & Moore, F.R. (2005). The Influence of Climate on the Timing and Rate of Spring Bird Migration. Oecologia, 142, 307-315.
https://doi.org/10.1007/s00442-004-1725-x
[36]  McDermott, M. E., & DeGroote, L. W. (2016). Long-Term Climate Impacts on Breeding Bird Phenology in Pennsylvania, USA. Global Change Biology, 22, 3304-3319.
https://doi.org/10.1111/gcb.13363
[37]  McKinney, A. M., CaraDonna, P. J., Inouye, D. W., Barr, B., Bertelsen, C. D., & Waser, N. M. (2012). Asynchronous Changes in Phenology of Migrating Broad-Tailed Hummingbirds and Their Early-Season Nectar Resources. Ecology, 93, 1987-1993.
https://doi.org/10.1890/12-0255.1
[38]  Miles, W. T., Bolton, M., Davis, P., Dennis, R., Broad, R., Robertson, I. et al. (2017). Quantifying Full Phenological Event Distributions Reveals Simultaneous Advances, Temporal Stability and Delays in Spring and Autumn Migration Timing in Long-Distance Migratory Birds. Global Change Biology, 4, 1400-1414.
https://doi.org/10.1111/gcb.13486
[39]  Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B., & Satzinger, P. (2008). Bird Migration Times, Climate Change, and Changing Population Sizes. Global Change Biology, 14, 1959-1972.
https://doi.org/10.1111/j.1365-2486.2008.01619.x
[40]  Mills, A. M. (2005). Changes in the Timing of Spring and Autumn Migration in North American Migrant Passerines during a Period of Global Warming. Ibis, 147, 259-269.
https://doi.org/10.1111/j.1474-919X.2005.00380.x
[41]  Møller, A. P., Rubolini, D., & Lehikoinen, E. (2008). Populations of Migratory Bird Species That Did Not Show a Phenological Response to Climate Change Are Declining. Proceedings of the National Academy of Sciences, 105, 16195-16200.
https://doi.org/10.1073/pnas.0803825105
[42]  Monahan, W. B., Rosemartin, A., Gerst, K. L., Fisichelli, N. A., Ault, T., Schwartz, M. D. et al. (2016). Climate Change Is Advancing Spring Onset across the US National Park System. Ecosphere, 7, e01465.
https://doi.org/10.1002/ecs2.1465
[43]  Morin, R. S., Domke, G. M., & Walters, B. F. (2017). Forests of West Virginia, 2016. Resource Update FS-123 (4 p.). U.S. Department of Agriculture, Forest Service, Northern Research Station.
https://doi.org/10.2737/FS-RU-123
[44]  Newson, S. E., Moran, N. J., Musgrove, A. J., Pearce-Higgins, J. W., Gillings, S., Atkinson, P. W. et al. (2016). Long-Term Changes in the Migration Phenology of UK Breeding Birds Detected by Large-Scale Citizen Science Recording Schemes. Ibis, 158, 481-495.
https://doi.org/10.1111/ibi.12367
[45]  Parmesan, C., & Yohe, G. (2003). A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421, 37-42.
https://doi.org/10.1038/nature01286
[46]  Petrauski, L., Owen, S. F., Constantz, G. D., & Anderson, J. T. (2019). Changes in Flowering Phenology of Cardamine concatenata and Erythronium americanum over 111 Years in the Central Appalachians. Plant Ecology, 220, 817-828.
https://doi.org/10.1007/s11258-019-00956-7
[47]  Petrauski, L., Owen, S., Constantz, G., & Anderson, J. T. (2020). Developing a Historical Phenology Dataset through Community Involvement for Climate Change Research. American Journal of Climate Change, 9, 11-22.
https://doi.org/10.4236/ajcc.2020.91002
[48]  R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/
[49]  Robbins, C. S., Sauer, J. R., Greenberg, R. S., & Droege, S. (1989). Population Declines in North American Birds That Migrate to the Neotropics. Proceedings of the National Academy of Sciences, 86, 7658-7662.
https://doi.org/10.1073/pnas.86.19.7658
[50]  Robinet, C., & Roques, A. (2010). Direct Impacts of Recent Climate Warming on Insect Populations. Integrative Zoology, 5, 132-142.
https://doi.org/10.1111/j.1749-4877.2010.00196.x
[51]  Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of Global Warming on Wild Animals and Plants. Nature, 421, 57-60.
https://doi.org/10.1038/nature01333
[52]  Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L., & Ziolkowski Jr., D. J. (2013). The North American Breeding Bird Survey 1966-2011: Summary Analysis and Species Accounts. North American Fauna, 79, 1-32.
https://doi.org/10.3996/nafa.79.0001
[53]  Shaw, D. W., Escalante, P., Rappole, J. H., Ramos, M. A., Oehlenschlager, R. J., Warner, D. W., & Winker, K. (2013). Decadal Changes and Delayed Avian Species Losses Due to Deforestation in the Northern Neotropics. PeerJ, 1, e179.
https://doi.org/10.7717/peerj.179
[54]  Studds, C. E., & Marra, P. P. (2011). Rainfall-Induced Changes in Food Availability Modify the Spring Departure Programme of a Migratory Bird. Proceedings of the Royal Society of London B: Biological Sciences, 278, 3437-3443.
https://doi.org/10.1098/rspb.2011.0332
[55]  Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. (2009). eBird: A Citizen-Based Bird Observation Network in the Biological Sciences. Biological Conservation, 142, 2282-2292.
https://doi.org/10.1016/j.biocon.2009.05.006
[56]  Swanson, D. L., & Palmer, J. S. (2009). Spring Migration Phenology of Birds in the Northern Prairie Region Is Correlated with Local Climate Change. Journal of Field Ornithology, 80, 351-363.
https://doi.org/10.1111/j.1557-9263.2009.00241.x
[57]  Travers, S. E., Marquardt, B., Zerr, N. J., Finch, J. B., Boche, M. J., Wilk, R., & Burdick, S. C. (2015). Climate Change and Shifting Arrival Date of Migratory Birds over a Century in the Northern Great Plains. The Wilson Journal of Ornithology, 127, 43-51.
https://doi.org/10.1676/14-033.1
[58]  Tryjanowski, P., & Sparks, T. H. (2001). Is the Detection of the First Arrival Date of Migrating Birds Influenced by Population Size? A Case Study of the Red-Backed Shrike Lanius collurio. International Journal of Biometeorology, 45, 217-219.
https://doi.org/10.1007/s00484-001-0112-0
[59]  Vegvari, Z., Bokony, V., Barta, Z., & Kovacs, G. (2010). Life History Predicts Advancement of Avian Spring Migration in Response to Climate Change. Global Change Biology, 16, 1-11.
https://doi.org/10.1111/j.1365-2486.2009.01876.x
[60]  Veselka, W. V., Anderson, J. T., & Kordek, W. S. (2010). Using Dual Classifications in the Development of Avian Wetlands Indices of Biological Integrity for Wetlands in West Virginia, USA. Environmental Monitoring and Assessment, 164, 533-548.
https://doi.org/10.1007/s10661-009-0911-z
[61]  Visser, M. E., & Both, C. (2005). Shifts in Phenology Due to Global Climate Change: The Need for a Yardstick. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2561-2569.
https://doi.org/10.1098/rspb.2005.3356
[62]  Visser, M. E., Holleman, L. J., & Gienapp, P. (2006). Shifts in Caterpillar Biomass Phenology Due to Climate Change and Its Impact on the Breeding Biology of an Insectivorous Bird. Oecologia, 147, 164-172.
https://doi.org/10.1007/s00442-005-0299-6
[63]  Wang, X., Piao, S., Xu, X., Ciais, P., MacBean, N., Myneni, R. B., & Li, L. (2015). Has the Advancing Onset of Spring Vegetation Green-Up Slowed down or Changed Abruptly over the Last Three Decades? Global Ecology and Biogeography, 24, 621-631.
https://doi.org/10.1111/geb.12289
[64]  Williams Jr., C. N., Menne, M. J., Vose, R. S., & Easterling, D. R. (2007). United States Historical Climatology Network Monthly Temperature and Precipitation Data. ORNL/CDIAC-118, NDP-019. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.
https://doi.org/10.3334/CDIAC/cli.ndp019
[65]  Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic Patterns of Species Loss in Thoreau’s Woods Are Driven by Climate Change. Proceedings of the National Academy of Sciences, 105, 17029-17033.
https://doi.org/10.1073/pnas.0806446105

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413