全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空间相干性对电解质纳米二聚体散射特性的影响
Effect of Spatial Coherence on the Scattering Properties of a Dielectric Nanodimer

DOI: 10.12677/MP.2023.136015, PP. 163-170

Keywords: 纳米二聚体,散射,电偶极子,空间相干性
Nanodimer
, Scattering, Electric Dipole, Spatial Coherence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究一个电介质纳米二聚体在部分相干光激发下的散射特性。首先解析推导了该二聚体的耦合电偶极子模型,并计算了散射光的远场强度分布特性。我们发现入射光的空间相干性对该纳米结构的散射强度、散射分布图样、散射方向性等都有显著影响。我们的计算结果尤其表明,入射光的空间相干性与它的偏振态和波长之间会产生复杂的相互作用从而改变上述散射性质。进一步通过调节空间相干度的幅值和相位,实现了对二聚体散射的强度方向性调控,这在不考虑磁多极激发的情况下是较为罕见的。我们的研究方法和结果对于进一步开发纳米结构的散射功能具有潜在的价值。
In this article we studied the scattering properties of a dielectric nanodimer excited by a partially coherent incident light. Far-field distributions of the intensity of scattered light were analyzed through both analytical derivations and numerical computations with the coupled electric dipole model. We found prominent effects of spatial coherence on the scattering strength, the scattering pattern and the scattering directivity. In particular, our computational results demonstrated com-plex interplays between the spatial coherence and the polarization and wavelength of incident light. Through tuning both the norm and phase of the degree of spatial coherence, we achieved evident transverse and directional scattering which were otherwise impossible without magnetic excitations. Our methods and findings in this study would be helpful in exploiting scattering functionalities using nanostructures.

References

[1]  Evlyukhin, A.B., Reinhardt, C., Seidel, A., Luk’yanchuk, B.S. and Chichkov, B.N. (2010) Opticalresponse Features of Si-Nanoparticle Arrays. Physical Review B, 82, Article ID: 045404.
https://doi.org/10.1103/PhysRevB.82.045404
[2]  Vaisanen, T., Markkanen, J., Hadamcik, E., Renard, J.B., Lasue, J., Levasseur-Regourd, A.C., Blum, J. and Muinonen, K. (2020) Scattering of Light by a Large, Densely Packed Ag-glomerate of Small Silica Spheres. Optics Letters, 45, 1679-1682.
https://doi.org/10.1364/OL.382240
[3]  Zanganeh, E., Evlyukhin, A., Miroshnichenko, A., Song, M., Nenasheva, E. and Kapitanova, P. (2021) Anapole Meta-Atoms: Nonradiating Electric and Magnetic Sources. Physical Review Letters, 127, Article ID: 096804.
https://doi.org/10.1103/PhysRevLett.127.096804
[4]  Achouri, K. and Caloz, C. (2021) Electromagnetic Metasur-faces: Theory and Applications. Wiley, New York.
https://doi.org/10.1002/9781119525219
[5]  Kaneko, S., Watanabe, S., Fujii, S., Nishino, T. and Kiguchi, M. (2020) The Practical Electromagnetic Effectin Surface-Enhanced Raman Scattering Observed by the Lithographically Fabricated Goldnanosquare Dimers. AIP Advances, 10, Article ID: 025301.
https://doi.org/10.1063/1.5126981
[6]  Wang, Y., Lu, Y. and Wang, P. (2018) Nanoscale Displacement Sensing Based on the Interaction of Agaussian Beam with Dielectric Nano-Dimer Antennas. Optics Express, 26, 1000-1011.
https://doi.org/10.1364/OE.26.001000
[7]  Mohammadi, E., Tittl, A., Tsakmakidis, K.L., Raziman, T.V. and Curto, A.G. (2021) Dual Nanoresonators for Ultrasensitive Chiral Detection. ACS Photonics, 8, 1754-1762.
https://doi.org/10.1021/acsphotonics.1c00311
[8]  Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A. and Kivshar, Y.S. (2012) All-Dielectric Optical Nanoantennas. Optics Express, 20, 20599-20604.
https://doi.org/10.1364/OE.20.020599
[9]  Shamkhi, H.K., Baryshnikova, K.V., Sayanskiy, A., Kapitanova, P., Terekhov, P.D., Belov, P., Karabchevsky, A., Evlyukhin, A.B., Kivshar, Y. and Shalin, A.S. (2019) Transverse Scatter-ing and Generalized Kerker Effects in All-Dielectric Mie-Resonant Metaoptics. Physical Review Letters, 122, Article ID: 193905.
https://doi.org/10.1103/PhysRevLett.122.193905
[10]  Powell, D.A. (2017) Interference between the Modes of an All-Dielectric Meta-Atom. Physical Review Applied, 7, Article ID: 034006.
https://doi.org/10.1103/PhysRevApplied.7.034006
[11]  Furasova, A., Calabro, E., Lamanna, E., Tiguntseva, E., Ushakova, E., Ubyivovk, E.,Mikhailovskii, V., Zakhidov, A., Makarov, S. and Carlo, A.D. (2018) Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. Advanced Optical Materials, 6, Article ID: 1800576.
https://doi.org/10.1002/adom.201800576
[12]  Mirnaziry, S.R., Shameli, M.A. and Yousefi, L. (2022) Design and Analysis of Multi-Layer Silicon Nanoparticle Solar Cells. Scientific Reports, 12, Article No. 13259.
https://doi.org/10.1038/s41598-022-17677-z
[13]  Agarwal, G.S., Gbur, G. and Wolf, E. (2004) Coherence Proper-ties of Sunlight. Optics Letters, 29, 459-461.
https://doi.org/10.1364/OL.29.000459
[14]  Divitt, S. and Novotny, L. (2015) Spatial Coherence of Sunlight and Its Implications for Light Management in Photovoltaics. Optica, 2, 95-103.
https://doi.org/10.1364/OPTICA.2.000095
[15]  Tihon, D., Withington, S., Bailly, E., Vest, B. and Greffet, J.J. (2020) General Relation between Spatial Coherence and Absorption. Optics Express, 29, 425-440.
https://doi.org/10.1364/OE.405484
[16]  Mandel, L. and Wolf, E. (1995) Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139644105
[17]  Albella, P., Poyli, M.A., Schmidt, M.K., Maier, S.A., Moreno, F., Saenz, J.J. and Aizpurua, J. (2013) Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwave-length Silicon Dimers. The Journal of Physical Chemistry C, 117, 13573-13584.
https://doi.org/10.1021/jp4027018
[18]  Novotny, L. and Hecht, B. (2012) Principles of Nano-Optics. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511794193
[19]  Bohren, C.F. and Huffman, D.R. (1998) Absorption and Scat-tering of Light by Small Particles. Wiley, New York.
https://doi.org/10.1002/9783527618156
[20]  Albella, P., Shibanuma, T. and Maier, S.A. (2015) Switchable Direc-tional Scattering of Electromagnetic Radiation with Subwavelength Asymmetric Silicon Dimers. Scientific Reports, 5, Ar-ticle No. 18322.
https://doi.org/10.1038/srep18322

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133