全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Environmentally Friendly Chitosan-Based Wood/Wood Composite Adhesive: Review

DOI: 10.4236/gsc.2023.134013, PP. 237-253

Keywords: Chitosan, Wood, Composite, Biopolymer, Adhesive

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to the world’s energy issues and dependency on petroleum resources, focus has switched to finding new, sustainable raw material sources for wood adhesives. Renewable biopolymers would gradually replace petroleum and natural gas as the primary raw materials used in wood adhesives. Chitosan is a biomass substance having a lot of reserves. Chitosan is one of the most fascinating biopolymers in the adhesive sector because of its potential qualities for adhesive applications, such as biodegradability, biocompatibility, and non-toxicity. Chitosan and its derivatives have so garnered considerable interest in a wide range of adhesive applications. However, its adhesive strength is insufficient to glue wood under normal, humid conditions. There has been a lot of study done on how to make chitosan-based adhesives more cohesive and water resistant. In order to effectively use chitosan-based wood glue in wood/wood composite adhesive that gives comparable performance to synthetic adhesives, numerous new ways have been developed. It has been modified by the addition of various cross-linkers, including aldehydes like glyoxal glutaraldehyde etc., epoxy compounds, blended with other polymers, different acids and chitosan grafted onto vinyl acetate. In the production of wood composites, chitosan can also scavenge formaldehyde. This review of chitosan-based adhesives focuses on various cross-linkers for chitosan modification in order to improve the properties of chitosan-based wood adhesives.

References

[1]  Gadhave, R.V. (2023) Synthesis and Characterization of Starch-Stabilized Polyvinyl Acetate-N-Methylol Acrylamide Polymer-Based Wood Adhesive. Journal of the Indian Academy of Wood Science, 20, 51-61.
https://doi.org/10.1007/s13196-023-00312-3
[2]  Gadhave, R.V. (2023) Comparative Study of Polyvinyl Acetate-Acrylic Acid and Polyvinyl Acetate-Methacrylic Acid Copolymer-Based Wood Adhesives. Journal of the Indian Academy of Wood Science.
https://doi.org/10.1007/s13196-023-00319-w
[3]  Xi, X., Pizzi, A., Lei, H., Zhang, B., Chen, X. and Du, G. (2022) Environmentally Friendly Chitosan Adhesives for Plywood Bonding. International Journal of Adhesion and Adhesives, 112, Article ID: 103027.
https://doi.org/10.1016/j.ijadhadh.2021.103027
[4]  Norstrom, E., Demircan, D., Fogelstrom, L., Khabbaz, F. and Malmstrom, E. (2018) Green Binders for Wood Adhesives. In: Ozer, H., Ed., Applied Adhesive Bonding in Science and Technology, InTech Open, London, 49-71.
https://doi.org/10.5772/intechopen.72072
[5]  Heinrich, L.A. (2019) Future Opportunities for Bio-Based Adhesives—Advantages beyond Renewability. Green Chemistry, 21, 1866-1888.
https://doi.org/10.1039/C8GC03746A
[6]  Moya, R., Rodríguez-Zúniga, A., Vega-Baudrit, J. and álvarez, V. (2015) Effects of Adding Nano-Clay (Montmorillonite) on Performance of Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Adhesives in Carapa guianensis, a Tropical Species. International Journal of Adhesion and Adhesives, 59, 62-70.
https://doi.org/10.1016/j.ijadhadh.2015.02.004
[7]  Sun, Y., Yu, W., Wei, X., Ge, L., Guo, Z. and Zhang, Y. (2021) Bamboo Strand-Based Structural Composite Lumber: Influence of Technological Parameters on Physico-Mechanical Properties. Construction and Building Materials, 271, Article ID: 121795.
https://doi.org/10.1016/j.conbuildmat.2020.121795
[8]  Yu, Y., Zhu, R., Wu, B., Hu, Y. and Yu, W. (2015) Fabrication, Material Properties, and Application of Bamboo Scrimber. Wood Science and Technology, 49, 83-98.
https://doi.org/10.1007/s00226-014-0683-7
[9]  Yu, Y., Liu, R., Huang, Y., Meng, F. and Yu, W. (2017) Preparation, Physical, Mechanical, and Interfacial Morphological Properties of Engineered Bamboo Scrimber. Construction and Building Materials, 157, 1032-1039.
https://doi.org/10.1016/j.conbuildmat.2017.09.185
[10]  Xing, W., Hao, J. and Sikora, K.S. (2019) Shear Performance of Adhesive Bonding of Cross-Laminated Bamboo. Journal of Materials in Civil Engineering, 31, Article ID: 04019201.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002854
[11]  Duan, Z., Hu, M., Jiang, S., Du, G., Zhou, X. and Li, T. (2022) Cocuring of Epoxidized Soybean Oil-Based Wood Adhesives and the Enhanced Bonding Performance by Plasma Treatment of Wood Surfaces. ACS Sustainable Chemistry & Engineering, 10, 3363-3372.
https://doi.org/10.1021/acssuschemeng.2c00130
[12]  Norstrom, E., Fogelstrom, L., Nordqvist, P., Khabbaz, F. and Malmstrom, E. (2015) Xylan—A Green Binder for Wood Adhesives. European Polymer Journal, 67, 483-493.
https://doi.org/10.1016/j.eurpolymj.2015.02.021
[13]  Nam, S. and Mooney, D. (2021) Polymeric Tissue Adhesives. Chemical Reviews, 121, 11336-11384.
https://doi.org/10.1021/acs.chemrev.0c00798
[14]  Fan, H. and Gong, J.P. (2021) Bioinspired Underwater Adhesives. Advanced Materials, 33, Article ID: 2102983.
https://doi.org/10.1002/adma.202102983
[15]  Cao, Y., Qin, C., Zhao, Z., Wang, Z. and Jin, C. (2023) Preparation and Properties of Medium-Density Fiberboards Bonded with Vanillin Crosslinked Chitosan. Polymers, 15, Article 2509.
https://doi.org/10.3390/polym15112509
[16]  Todorovic, T., Norstrom, E., Khabbaz, F., Brücher, J., Malmstrom, E. and Fogelstrom, L. (2021) A Fully Bio-Based Wood Adhesive Valorising Hemicellulose-Rich Sidestreams from the Pulp Industry. Green Chemistry, 23, 3322-3333.
https://doi.org/10.1039/D0GC04273K
[17]  World Health Organization (2012) Chemical Agents and Related Occupations, Volume 100 F: A Review of Human Carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.
https://www.ncbi.nlm.nih.gov/books/NBK304416/pdf/Bookshelf_NBK304416.pdf
[18]  Li, D., Zhuang, B., Wang, X., Wu, Z., Wei, W., Aladejana, J.T., Hou, X., Yves, K.G., Xie, Y. and Liu, J. (2020) Chitosan Used as a Specific Coupling Agent to Modify Starch in Preparation of Adhesive Film. Journal of Cleaner Production, 277, Article ID: 123210.
https://doi.org/10.1016/j.jclepro.2020.123210
[19]  Fan, C., Fu, J., Zhu, W. and Wang, D.A. (2016) A Mussel-Inspired Double-Crosslinked Tissue Adhesive Intended for Internal Medical Use. Acta Biomaterialia, 33, 51-63.
https://doi.org/10.1016/j.actbio.2016.02.003
[20]  Budhe, S., Banea, M.D., de Barros, S. and da Silva, L.F.M. (2017) An Updated Review of Adhesively Bonded Joints in Composite Materials. International Journal of Adhesion and Adhesives, 72, 30-42.
https://doi.org/10.1016/j.ijadhadh.2016.10.010
[21]  Zhang, J., Wang, W., Zhou, X., Liang, J., Du, G. and Wu, Z. (2019) Lignin-Based Adhesive Crosslinked by Furfuryl Alcohol-Glyoxal and Epoxy Resins. Nordic Pulp & Paper Research Journal, 34, 228-238.
https://doi.org/10.1515/npprj-2018-0042
[22]  Callow, J.A. and Callow, M.E. (2011) Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings. Nature Communications, 2, Article No. 244.
https://doi.org/10.1038/ncomms1251
[23]  Xu, Y., Zhang, H., Jiang, Q. and Xia, W. (2014) Preliminary Purification and Characterization of Adhesive Proteins from Freshwater Mussels. The Journal of Adhesion, 90, 607-617.
https://doi.org/10.1080/00218464.2013.823602
[24]  Arias, A., González-Rodríguez, S., Vetroni Barros, M., Salvador, R., de Francisco, A.C., Moro Piekarski, C. and Moreira, M.T. (2021) Recent Developments in Bio-Based Adhesives from Renewable Natural Resources. Journal of Cleaner Production, 314, Article ID: 127892.
https://doi.org/10.1016/j.jclepro.2021.127892
[25]  Zhao, S., Wang, Z., Li, Z., Li, L., Li, J. and Zhang, S. (2019) Core-Shell Nanohybrid Elastomer Based on Co-Deposition Strategy to Improve Performance of Soy Protein Adhesive. ACS Applied Materials & Interfaces, 11, 32414-32422.
https://doi.org/10.1021/acsami.9b11385
[26]  Talaei, A., Ashori, A. and Heydari, V. (2022) A Comparative Study on the Mechanical and Physical Properties of Plywood Panels Prepared by Chitosan as Bio-Adhesive. Journal of Polymers and the Environment, 30, 4263-4270.
https://doi.org/10.1007/s10924-022-02523-0
[27]  Norstrom, E., Fogelstrom, L., Nordqvist, P., Khabbaz, F. and Malmstrom, E. (2014) Gum Dispersions as Environmentally Friendly Wood Adhesives. Industrial Crops and Products, 52, 736-744.
https://doi.org/10.1016/j.indcrop.2013.12.001
[28]  Pizzi, A. (2006) Recent Developments in Eco-Efficient Bio-Based Adhesives for Wood Bonding: Opportunities and Issues. Journal of Adhesion Science and Technology, 20, 829-846.
https://doi.org/10.1163/156856106777638635
[29]  Nordqvist, P., Khabbaz, F. and Malmstrom, E. (2010) Comparing Bond Strength and Water Resistance of Alkali-Modified Soy Protein Isolate and Wheat Gluten Adhesives. International Journal of Adhesion and Adhesives, 30, 72-79.
https://doi.org/10.1016/j.ijadhadh.2009.09.002
[30]  Wozniak, M., Gromadzka, K., Kwasniewska-Sip, P., Cofta, G. and Ratajczak, I. (2022) Chitosan-Caffeine Formulation as an Ecological Preservative in Wood Protection. Wood Science and Technology, 56, 1851-1867.
https://doi.org/10.1007/s00226-022-01426-6
[31]  Silvestre, J., Delattre, C., Michaud, P. and de Baynast, H. (2021) Optimization of Chitosan Properties with the Aim of a Water Resistant Adhesive Development. Polymers, 13, Article 4031.
https://doi.org/10.3390/polym13224031
[32]  Kim, U.J., Lee, Y.R., Kang, T.H., Choi, J.W., Kimura, S. and Wada, M. (2017) Protein Adsorption of Dialdehyde Cellulose-Crosslinked Chitosan with High Amino Group Contents. Carbohydrate Polymers, 163, 34-42.
https://doi.org/10.1016/j.carbpol.2017.01.052
[33]  Jiang, Y., Liu, B., Xu, J., Pan, K., Hou, H., Hu, J. and Yang, J. (2018) Cross-Linked Chitosan/β-Cyclodextrin Composite for Selective Removal of Methyl Orange: Adsorption Performance and Mechanism. Carbohydrate Polymers, 182, 106-114.
https://doi.org/10.1016/j.carbpol.2017.10.097
[34]  Alam, M.N. and Christopher, L.P. (2018) Natural Cellulose-Chitosan Cross-Linked Superabsorbent Hydrogels with Superior Swelling Properties. ACS Sustainable Chemistry & Engineering, 6, 8736-8742.
https://doi.org/10.1021/acssuschemeng.8b01062
[35]  Krajewska, B. (2004) Application of Chitin- and Chitosan-Based Materials for Enzyme Immobilizations: A Review. Enzyme and Microbial Technology, 35, 126-139.
https://doi.org/10.1016/j.enzmictec.2003.12.013
[36]  Khor, E. and Lim, L.Y. (2003) Implantable Applications of Chitin and Chitosan. Biomaterials, 24, 2339-2349.
https://doi.org/10.1016/S0142-9612(03)00026-7
[37]  Thein-Han, W.W. and Misra, R.D.K. (2009) Biomimetic Chitosan-Nanohydroxyapatite Composite Scaffolds for Bone Tissue Engineering. Acta Biomaterialia, 5, 1182-1197.
https://doi.org/10.1016/j.actbio.2008.11.025
[38]  Allan, C.R. and Hadwiger, L.A. (1979) The Fungicidal Effect of Chitosan on Fungi of Varying Cell Wall Composition. Experimental Mycology, 3, 285-287.
https://doi.org/10.1016/S0147-5975(79)80054-7
[39]  Ben-Shalom, R.D., Nevo, Z. and Patchornik, A. (2009) Novel Injectable Chitosan Mixtures Forming Hydrogels. CN101636181A.
https://patents.google.com/patent/CN101636181A/en.
[40]  Guibal, E. (2004) Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Separation and Purification Technology, 38, 43-74.
https://doi.org/10.1016/j.seppur.2003.10.004
[41]  Moubarik, A., Allal, A., Pizzi, A., Charrier, F. and Charrier, B. (2010) Characterization of a Formaldehyde-Free Cornstarch-Tannin Wood Adhesive for Interior Plywood. European Journal of Wood and Wood Products, 68, 427-433.
https://doi.org/10.1007/s00107-009-0379-0
[42]  George, M. and Abraham, T.E. (2006) Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan—A Review. Journal of Controlled Release, 114, 1-14.
https://doi.org/10.1016/j.jconrel.2006.04.017
[43]  Zou, Q., Li, J. and Li, Y. (2015) Preparation and Characterization of Vanillin-Crosslinked Chitosan Therapeutic Bioactive Microcarriers. International Journal of Biological Macromolecules, 79, 736-747.
https://doi.org/10.1016/j.ijbiomac.2015.05.037
[44]  Ji, X., Dong, Y., Nguyen, T.T., Chen, X. and Guo, M. (2018) Environment-Friendly Wood Fibre Composite with High Bonding Strength and Water Resistance. Royal Society Open Science, 5, Article ID: 172002.
https://doi.org/10.1098/rsos.172002
[45]  Mati-Baouche, N., Delattre, C., de Baynast, H., Grédiac, M., Mathias, J.D., Ursu, A.V., Desbrières, J. and Michaud, P. (2019) Alkyl-Chitosan-Based Adhesive: Water Resistance Improvement. Molecules, 24, Article 1987.
https://doi.org/10.3390/molecules24101987
[46]  Cui, Z., Beach, E.S. and Anastas, P.T. (2011) Modification of Chitosan Films with Environmentally Benign Reagents for Increased Water Resistance. Green Chemistry Letters and Reviews, 4, 35-40.
https://doi.org/10.1080/17518253.2010.500621
[47]  Patel, A.K., Michaud, P., Petit, E., de Baynast, H., Grédiac, M. and Mathias, J.D. (2013) Development of a Chitosan-Based Adhesive. Application to Wood Bonding. Journal of Applied Polymer Science, 127, 5014-5021.
https://doi.org/10.1002/app.38097
[48]  Patel, A.K. (2015) Chitosan: Emergence as Potent Candidate for Green Adhesive Market. Biochemical Engineering Journal, 102, 74-81.
https://doi.org/10.1016/j.bej.2015.01.005
[49]  Hassannejad, H., Shalbafan, A. and Rahmaninia, M. (2020) Reduction of Formaldehyde Emission from Medium Density Fiberboard by Chitosan as Scavenger. The Journal of Adhesion, 96, 797-813.
https://doi.org/10.1080/00218464.2018.1515631
[50]  Mati-Baouche, N., Elchinger, P.H., de Baynast, H., Pierre, G., Delattre, C. and Michaud, P. (2014) Chitosan as an Adhesive. European Polymer Journal, 60, 198-212.
https://doi.org/10.1016/j.eurpolymj.2014.09.008
[51]  Basturk, M.A. (2012) Heat Applied Chitosan Treatment on Hardwood Chips to Improve Physical and Mechanical Properties of Particleboard. BioResources, 7, 4858-4866.
https://doi.org/10.15376/biores.7.4.4858-4866
[52]  Mathias, J.D., Grediac, M., De Baynast, H., Michaud, P. and Patel, A. (2020) Adhesive Composition Including Deacetylated Chitosan. US9670387B2.
https://patents.google.com/patent/US9670387B2/en
[53]  Umemura, K., Inoue, A. and Kawai, S. (2003) Development of New Natural Polymer-Based Wood Adhesives I: Dry Bond Strength and Water Resistance of Konjac Glucomannan, Chitosan, and Their Composites. Journal of Wood Science, 49, 221-226.
https://doi.org/10.1007/s10086-002-0468-8
[54]  Maulana, M.I., Lubis, M.A.R., Febrianto, F., Hua, L.S., Iswanto, A.H., Antov, P., Kristak, L., Mardawati, E., Sari, R.K., Zaini, L.H., Hidayat, W., Lo Giudice, V. and Todaro, L. (2022) Environmentally Friendly Starch-Based Adhesives for Bonding High-Performance Wood Composites: A Review. Forests, 13, Article 1614.
https://doi.org/10.3390/f13101614
[55]  Paiva, D., Goncalves, C., Vale, I., Bastos, M. and Magalhaes, F. (2016) Oxidized Xanthan Gum and Chitosan as Natural Adhesives for Cork. Polymers, 8, Article 259.
https://doi.org/10.3390/polym8070259
[56]  Zhang, Y., Wu, J.Q., Li, H., Yuan, T.Q., Wang, Y.Y. and Sun, R.C. (2017) Heat Treatment of Industrial Alkaline Lignin and Its Potential Application as an Adhesive for Green Wood-Lignin Composites. ACS Sustainable Chemistry & Engineering, 5, 7269-7277.
https://doi.org/10.1021/acssuschemeng.7b01485
[57]  Gadhave, R.V. (2023) Xanthan Gum—Bio-Based Raw Material for Wood Adhesive. Green and Sustainable Chemistry, 13, 153-161.
https://doi.org/10.4236/gsc.2023.132008
[58]  Huang, Y., Lin, Q., Yang, C., Bian, G., Zhang, Y. and Yu, W. (2020) Multi-Scale Characterization of Bamboo Bonding Interfaces with Phenol-Formaldehyde Resin of Different Molecular Weight to Study the Bonding Mechanism. Journal of the Royal Society Interface, 17, Article ID: 20190755.
https://doi.org/10.1098/rsif.2019.0755
[59]  Jin, S., Li, K., Zhang, X., Gao, Q., Zeng, L., Shi, S.Q. and Li, J. (2020) Phytic Acid-Assisted Fabrication for Soybean Meal/Nanofiber Composite Adhesive via Bioinspired Chelation Reinforcement Strategy. Journal of Hazardous Material, 399, Article ID: 123064.
https://doi.org/10.1016/j.jhazmat.2020.123064
[60]  Lu, J., Jiang, P., Chen, Z., Li, L. and Huang, Y. (2021) Flame Retardancy, Thermal Stability, and Hygroscopicity of Wood Materials Modified with Melamine and Amino Trimethylene Phosphonic Acid. Construction and Building Materials, 267, Article ID: 121042.
https://doi.org/10.1016/j.conbuildmat.2020.121042
[61]  Chen, L., Wang, Y., Din, Z., Fei, P., Jin, W., Xiong, H. and Wang, Z. (2017) Enhancing the Performance of Starch-Based Wood Adhesive by Silane Coupling Agent (KH570). International Journal of Biological Macromolecules, 104, 137-144.
https://doi.org/10.1016/j.ijbiomac.2017.05.182
[62]  Ouchi, T., Kontani, T. and Ohya, Y. (2003) Modification of Polylactide upon Physical Properties by Solution-Cast Blends from Polylactide and Polylactide-Grafted Dextran. Polymer, 44, 3927-3933.
https://doi.org/10.1016/S0032-3861(03)00308-2
[63]  Umemura, K., Mihara, A. and Kawai, S. (2010) Development of New Natural Polymer-Based Wood Adhesives III: Effects of Glucose Addition on Properties of Chitosan. Journal of Wood Science, 56, 387-394.
https://doi.org/10.1007/s10086-010-1117-2
[64]  Akgün, S., Ekici, G., Mutlu, N., Besirli, N. and Hazer, B. (2007) Synthesis and Properties of Chitosan-Modified Poly (Vinyl Butyrate). Journal of Polymer Research, 14, 215-221.
https://doi.org/10.1007/s10965-007-9100-3
[65]  Gadhave, R.V.I. (2022) Starch Grafted Water Resistant Polyvinyl Acetate-Based Wood Adhesive: A Review. Open Journal of Organic Polymer Materials, 12, 17-30.
https://doi.org/10.4236/ojopm.2022.122002
[66]  Ehrlich, H. (2010) Chitin and Collagen as Universal and Alternative Templates in Biomineralization. International Geology Review, 52, 661-699.
https://doi.org/10.1080/00206811003679521
[67]  Sorlier, P., Denuzière, A., Viton, C. and Domard, A. (2001) Relation between the Degree of Acetylation and the Electrostatic Properties of Chitin and Chitosan. Biomacromolecules, 2, 765-772.
https://doi.org/10.1021/bm015531+
[68]  Wysokowski, M., Klapiszewski, L., Moszyński, D., Bartczak, P., Szatkowski, T., Majchrzak, I., Siwińska-Stefańska, K., Bazhenov, V. and Jesionowski, T. (2014) Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium (II) and Nickel (II) Ions. Marine Drugs, 12, 2245-2268.
https://doi.org/10.3390/md12042245
[69]  Nair, V., Panigrahy, A. and Vinu, R. (2014) Development of Novel Chitosan-Lignin Composites for Adsorption of Dyes and Metal Ions from Wastewater. Chemical Engineering Journal, 254, 491-502.
https://doi.org/10.1016/j.cej.2014.05.045
[70]  Ji, X. and Guo, M. (2018) Preparation and Properties of a Chitosan-Lignin Wood Adhesive. International Journal of Adhesion and Adhesives, 82, 8-13.
https://doi.org/10.1016/j.ijadhadh.2017.12.005
[71]  Bakshi, P.S., Selvakumar, D., Kadirvelu, K. and Kumar, N.S. (2020) Chitosan as an Environment Friendly Biomaterial—A Review on Recent Modifications and Applications. International Journal of Biological Macromolecules, 150, 1072-1083.
https://doi.org/10.1016/j.ijbiomac.2019.10.113
[72]  Salam, A., Venditti, R.A., Pawlak, J.J. and El-Tahlawy, K. (2011) Crosslinked Hemicellulose Citrate-Chitosan Aerogel Foams. Carbohydrate Polymers, 84, 1221-1229.
https://doi.org/10.1016/j.carbpol.2011.01.008
[73]  Li, Y.J. (2009) Konjac Glucomannan/Chitosan Based Adhesive for Plywood Production. China Wood Industry.
https://api.semanticscholar.org/CorpusID:138887492
[74]  Shalbafan, A., Hassannejad, H. and Rahmaninia, M. (2020) Chitosan-Based Formaldehyde Scavenger and Applications Thereof in Wood-Based Products. US2018-0201812A1.
https://patents.google.com/patent/US20180201812A1/en
[75]  Calero, N., Munoz, J., Ramírez, P. and Guerrero, A. (2010) Flow Behaviour, Linear Viscoelasticity and Surface Properties of Chitosan Aqueous Solutions. Food Hydrocolloids, 24, 659-666.
https://doi.org/10.1016/j.foodhyd.2010.03.009
[76]  Zhang, Y., Ding, L., Gu, J., Tan, H. and Zhu L., (2015) Preparation and Properties of a Starch-Based Wood Adhesive with High Bonding Strength and Water Resistance. Carbohydrate Polymers, 115, 32-37.
https://doi.org/10.1016/j.carbpol.2014.08.063
[77]  Sheu, C., Shalumon, K.T., Chen, C.H., Kuo, C.Y., Fong, Y.T. and Chen, J.P. (2016) Dual Crosslinked Hyaluronic Acid Nanofibrous Membranes for Prolonged Prevention of Post-Surgical Peritoneal Adhesion. Journal of Materials Chemistry B, 4, 6680-6693.
https://doi.org/10.1039/C6TB01376G
[78]  Cui, S., Yao, B., Gao, M., Sun, X., Gou, D., Hu, J., Zhou, Y. and Liu, Y. (2017) Effects of Pectin Structure and Crosslinking Method on the Properties of Crosslinked Pectin Nanofibers. Carbohydrate Polymers, 157, 766-774.
https://doi.org/10.1016/j.carbpol.2016.10.052
[79]  Sun, S., Zhao, Z. and Umemura, K. (2019) Further Exploration of Sucrose-Citric Acid Adhesive: Synthesis and Application on Plywood. Polymers, 11, Article 1875.
https://doi.org/10.3390/polym11111875
[80]  Luo, J., Zhou, Y., Gao, Q., Li, J. and Yan, N. (2020) From Wastes to Functions: A New Soybean Meal and Bark-Based Adhesive. ACS Sustainable Chemistry & Engineering, 8, 10767-10773.
https://doi.org/10.1021/acssuschemeng.0c02413
[81]  Wang, Z., Yan, Y., Shen, X., Qian, T., Wang, J., Sun, Q. and Jin, C. (2018) Lignocellulose-Chitosan-Multiwalled Carbon Nanotube Composites with Improved Mechanical Strength, Dimensional Stability and Fire Retardancy. Polymers, 10, Article 341.
https://doi.org/10.3390/polym10030341
[82]  Huang, E., Cao, Y., Duan, X., Yan, Y., Wang, Z. and Jin, C. (2021) Cross-Linked Chitosan as an Eco-Friendly Binder for High-Performance Wood-Based Fiberboard. International Journal of Polymer Science, 2021, Article ID 8671384.
https://doi.org/10.1155/2021/8671384
[83]  Ji, X., Dong, Y., Yuan, B., Li, B. and Guo, M. (2018) Influence of Glutaraldehyde on the Performance of a Lignosulfonate/Chitosan-Based Medium Density Fiberboard Adhesive. Journal of Applied Polymer Science, 135, Article ID: 45870.
https://doi.org/10.1002/app.45870
[84]  Casettari, L., Vllasaliu, D., Lam, J.K.W., Soliman, M. and Illum, L. (2012) Biomedical Applications of Amino Acid-Modified Chitosans: A Review. Biomaterials, 33, 7565-7583.
https://doi.org/10.1016/j.biomaterials.2012.06.104
[85]  Augugliaro, V., Camera-Roda, G., Loddo, V., Palmisano, G., Palmisano, L., Parrino, F. and Puma, M.A. (2012) Synthesis of Vanillin in Water by TiO2 Photocatalysis. Applied Catalysis B: Environmental, 111-112, 555-561.
https://doi.org/10.1016/j.apcatb.2011.11.007
[86]  Ghosh, P., Rameshbabu, A.P., Dogra, N. and Dhara, S. (2014) 2, 5-Dimethoxy 2, 5-Dihydrofuran Crosslinked Chitosan Fibers Enhance Bone Regeneration in Rabbit Femur Defects. RSC Advances, 4, 19516-19524.
https://doi.org/10.1039/C4RA01971G
[87]  Costa-Júnior, E.S., Barbosa-Stancioli, E.F., Mansur, A.A.P., Vasconcelos, W.L. and Mansur, H.S. (2009) Preparation and Characterization of Chitosan/Poly (Vinyl Alcohol) Chemically Crosslinked Blends for Biomedical Applications. Carbohydrate Polymers, 76, 472-481.
https://doi.org/10.1016/j.carbpol.2008.11.015

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413