全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study and Modeling of the Grinding Kinetics of Reactive Rocks in a Cement Laboratory

DOI: 10.4236/jmmce.2023.116017, PP. 224-248

Keywords: Cementitious Materials, Blaine, Grindability, Modeling, Rittinger, Van Der Waals

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article focuses on the study of crushing rocks that can replace clinker in low-carbon cement. A laboratory ball mill was used, varying the duration of the grinding. It has been observed that the specific surface of rocks changes in a nonlinear way with time, due to the agglomeration of particles. To this end, a mathematical model describing this evolution, which considers van der Waals forces, has been proposed. And finally, the model was adjusted regarding the experimental data. The results found show that the present model is more accurate than the classical models, because it considers the agglomeration phenomenon.

References

[1]  Bouzoubaa, N. and Lachemi, M. (2001) Self-Compacting Concrete Incorporating High Volumes of Class F Fly Ash: Preliminary Results. Cement and Concrete Research, 31, 413-420.
https://doi.org/10.1016/S0008-8846(00)00504-4
[2]  Ma, J., Wang, D., Zhao, S., Duan, P. and Yang, S. (2021) Influence of Particle Morphology of Ground Fly Ash on the Fluidity and Strength of Cement Paste. Materials, 14, Article 283.
https://doi.org/10.3390/ma14020283
[3]  Sherwani, A.F.H., Younis, K.H. and Arndt, R.W. (2022) Fresh, Mechanical, and Durability Behavior of Fly Ash-Based Self Compacted Geopolymer Concrete: Effect of Slag Content and Various Curing Conditions. Polymers, 14, Article 3209.
https://doi.org/10.3390/polym14153209
[4]  Rittinger, R.P.V. (1867) Lehrbuch der Aufbereitungskunde. Ernst and Korn, Berlin.
[5]  Bond, F.C. (1952) The Third Theory of Comminution. Transactions of the AIME, 193, 484-494.
[6]  Austin, L.G., Bagga, P., Celik, M. and Luckie, P.T. (1984) An Analysis of Fine Dry Grinding in Ball Mills. Powder Technology, 28, 83-90.
https://doi.org/10.1016/0032-5910(81)87014-3
[7]  Drahman, S.H., Kueh, A.B.H., Abidin, A.R.Z. and Nikmatin, S. (2018) Efficient Cumulative Breakage Distribution and Breakage Rate Computation with Minimal Experiment Intervention Incorporating Optimal time Determination for Fine Grinding Simulation. Powder Technology, 329, 313-322.
https://doi.org/10.1016/j.powtec.2018.01.075
[8]  Lee, H., Kim, K. and Lee, H. (2019) Analysis of Grinding Kinetics in a Laboratory Ball Mill Using Population-Balance-Model and Discrete-Element-Method. Advanced Powder Technology, 30, 2517-2526.
https://doi.org/10.1016/j.apt.2019.07.030
[9]  Zhang, W., Li, S., Song, L., Sheng, Y., Xiao, J. and Zhang, T. (2023) Studying the Effects of Varied Dosages and Grinding Times on the Mechanical Properties of Mortar. Sustainability, 15, Article 5936.
https://doi.org/10.3390/su15075936
[10]  Krishnaraj, L. and Ravichandran, P.T. (2019) Investigation on Grinding Impact of Fly Ash Particles and Its Characterization Analysis in Cement Mortar Composites. Ain Shams Engineering Journal, 10, 267-274.
https://doi.org/10.1016/j.asej.2019.02.001
[11]  Capece, M., Davé, R.N. and Bilgili, E. (2018) A Pseudo-Coupled DEM-Non-Linear PBM Approach for Simulating the Evolution of Particle Size during Dry Milling. Powder Technology, 323, 374-384.
https://doi.org/10.1016/j.powtec.2017.10.008
[12]  Böttcher, A.-C., Beusen, D., Lüddecke, A., Overbeck, A., Schilde, C. and Kwade, A. (2022) Single and Multiple Breakage Events in Fine Particle Breakage Testing with a Rigidly-Mounted Roll Mill. Minerals Engineering, 178, Article ID: 107390.
https://doi.org/10.1016/j.mineng.2021.107390
[13]  El-Shall, H. and Somasundaran, P. (1984) Physico-Chemical Aspects of Grinding: A Review of Use of Additives. Powder Technology, 38, 275-293.
https://doi.org/10.1016/0032-5910(84)85009-3
[14]  Yekeler, M., Ozkan, A. and Austin, L.G. (2001) Kinetics of Fine Wet Grinding in a Laboratory Ball Mill. Powder Technology, 114, 224-228.
https://doi.org/10.1016/S0032-5910(00)00326-0
[15]  Rajaonarivony, K., Rouau, X., Lampoh, K., Delenne, J.-Y. and Mayer-Laigle, C. (2019) Fine Comminution of Pine Bark: How Does Mechanical Loading Influence Particles Properties and Milling Efficiency? Bioengineering, 6, Article 102.
https://doi.org/10.3390/bioengineering6040102
[16]  Miao, Z., Grift, T.E., Hansen, A.C. and Ting, K.C. (2011) Energy Requirement for Comminution of Biomass in Relation to Particle Physical Properties. Industrial Crops and Products, 33, 504-513.
https://doi.org/10.1016/j.indcrop.2010.12.016
[17]  Mayer-Laigle, C., Rajaonarivony, R.K., Blanc, N. and Rouau, X. (2018) Comminution of Dry Lignocellulosic Biomass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. Bioengineering, 5, Article 50.
https://doi.org/10.3390/bioengineering5030050
[18]  Blanc, N., Mayer-Laigle, C., Frank, X., Radjai, F. and Delenne, J.-Y. (2020) Evolution of Grinding Energy and Particle Size during Dry Ball-Milling of Silica Sand. Powder Technology, 376, 661-667.
https://doi.org/10.1016/j.powtec.2020.08.048
[19]  Yang, J., Li, G., Yang, W. and Guan, J. (2022) Effect of Polycarboxylic Grinding Aid on Cement Chemistry and Properties. Polymers, 14, Article 3905.
https://doi.org/10.3390/polym14183905
[20]  Ghalandari, V. and Iranmanesh, A. (2020) Energy and Exergy Analyses for a Cement Ball Mill of a New Generation Cement Plant and Optimizing Grinding Process: A Case Study. Advanced Powder Technology, 31, 1796-1810.
https://doi.org/10.1016/j.apt.2020.02.013
[21]  Katsioti, M., Tsakiridis, P.E., Giannatos, P., Tsibouki, Z. and Marinos, J. (2009) Characterization of Various Cement Grinding Aids and Their Impact on Grindability and Cement Performance. Construction and Building Materials, 23, 1954-1959.
https://doi.org/10.1016/j.conbuildmat.2008.09.003
[22]  Nava, J.V., Llorens, T. and Menéndez-Aguado, J.M. (2020) Kinetics of Dry-Batch Grinding in a Laboratory-Scale Ball Mill of Sn-Ta-Nb Minerals from the Penouta Mine (Spain). Metals, 10, Article 1687.
https://doi.org/10.3390/met10121687
[23]  Toprak, N. and Benzer, H. (2019) Effects of Grinding Aids on Model Parameters of a Cement Ball Mill and an Air Classifier. Powder Technology, 344, 706-718.
https://doi.org/10.1016/j.powtec.2018.12.039
[24]  Vargas, J.F.G., Espinosa, M., Cárdenas, Y.D., Diaz, A.H. and Martirena-Hernandez, J.F. (2020) Use of Grinding Aids for Grinding Ternary Blends Portland Cement-Calcined Clay-Limestone. In: Martirena-Hernandez, J., Alujas-Díaz, A. and Amador-Hernandez, M., Eds., Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete, RILEM Bookseries, Vol 22, Springer, Cham.
https://doi.org/10.1007/978-3-030-22034-1_2
[25]  Zunino, F. and Scrivener, K. (2021) Assessing the Effect of Alkanolamine Grinding Aids in Limestone Calcined Clay Cements Hydration. Construction and Building Materials, 266, Article ID: 121293.
https://doi.org/10.1016/j.conbuildmat.2020.121293
[26]  Seke, V., Phuku, P., Efoto, E., Mbosei, L. and Muanda, N. (2022) Caracterisations chimique et minéralogique aux rayons X et suivi de la broyabilité des clinker, dolérite, basalte et metabasalte du Kongo-Central pour une application cimentière. Acasti and Cedesurk Online Journal, 10, 11-23.
[27]  Giraud, M. (2020) Analyse du comportement rhéologique des poudres à partir des propriétés des grains, application à l’étude d’un procédé de broyage/mélange pour la préparation du combustible nucléaire MOX (Doctoral dissertation). Ecole des mines d’Albi-Carmaux.
https: //theses. hal. science
[28]  Prziwara, P. and Kwade, A. (2020) Grinding Aids for Dry Fine Grinding Processes—Part I: Mechanism of Action and Lab-Scale Grinding. Powder Technology, 375, 146-160.
https://doi.org/10.1016/j.powtec.2020.07.038
[29]  Matsanga, N., Nheta, W. and Chimwani, N. (2023) Grinding Media in Ball Mills-A Review. Preprints.
https://doi.org/10.20944/preprints202304.0811.v1
[30]  Altun, O. (2018) Energy and Cement Quality Optimization of a Cement Grinding Circuit. Advanced Powder Technology, 29, 1713-1723.
https://doi.org/10.1016/j.apt.2018.04.006
[31]  Ghadiri, M. and Zhang, Z.Y. (2002) Impact Attrition of Particulate Solids: Part I: A Theoretical Model of Chipping. Chemical Engineering Science, 57, 3659-3669.
https://doi.org/10.1016/S0009-2509(02)00240-3
[32]  Nikolić, V., García, G.G., Coello-Velázquez, A.L., Menéndez-Aguado, J.M., Trumić, M. and Trumić, M.S. (2021) A Review of Alternative Procedures to the Bond Ball Mill Standard Grindability Test. Metals, 11, Article 1114.
https://doi.org/10.3390/met11071114
[33]  Baláž P., et al. (2013) Hallmarks of Mechanochemistry: From Nanoparticles to Technology. Chemical Society Reviews, 42, 7571-7637.
https://doi.org/10.1039/c3cs35468g
[34]  Monazam, E.R., Galinsky, N.L., Breault, R.W. and Bayham, S.C. (2018) Attrition of Hematite Particles for Chemical Looping Combustion in a Conical Jet Cup. Powder Technology, 340, 528-536.
https://doi.org/10.1016/j.powtec.2018.09.027
[35]  Chodakov, G.S. (1972) Physics of Milling. Nauka, Moscow.
[36]  Alrbaihat, M., Al-Zeidaneen, F.K. and Abu-Afifeh, Q. (2022) Reviews of the Kinetics of Mechanochemistry: Theoretical and Modeling Aspects. Materials Today: Proceedings, 65, 3651-3656.
https://doi.org/10.1016/j.matpr.2022.06.195
[37]  Opoczky, L. (1977) Fine Grinding and Agglomeration of Silicates. Powder Technology, 17, 1-7.
https://doi.org/10.1016/0032-5910(77)85037-7
[38]  Chen, G.X., Li, Y.G., Liu, X. and Yang, B. (2021) Physics-Informed Bayesian Inference for Milling Stability Analysis. International Journal of Machine Tools and Manufacture, 167, Article ID: 103767.
https://doi.org/10.1016/j.ijmachtools.2021.103767
[39]  Gábor, M. (2016) Mechanical Activation of Power Station Fly Ash by Grinding—A Review. Journal of Silicate Based and Composite Materials, 68, 56-61.
https://doi.org/10.14382/epitoanyag-jsbcm.2016.10
[40]  Akmalaiuly, K., Berdikul, N., Pundienė, I. and Pranckevičienė, J. (2023) The Effect of Mechanical Activation of Fly Ash on Cement-Based Materials Hydration and Hardened State Properties. Materials, 16, Article 2959.
https://doi.org/10.3390/ma16082959
[41]  Guzzo, P.L., Marinho de Barros, F.B., Soares, B.R. and Santos, J.B. (2020) Evaluation of Particle Size Reduction and Agglomeration in Dry Grinding of Natural Quartz in a Planetary Ball Mill. Powder Technology, 368, 149-159.

https://doi.org/10.1016/j.powtec.2020.04.052
[42]  Singh, A.K. (2016) Chapter 2—Structure, Synthesis, and Application of Nanoparticles. Engineered Nanoparticles, 19-76.
https://doi.org/10.1016/B978-0-12-801406-6.00002-9
[43]  Altammar, K.A. (2023) A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Frontiers in Microbiology, 14, Article ID: 1155622.
https://doi.org/10.3389/fmicb.2023.1155622
[44]  Fladvad, M., Onnela, T. (2020) Influence of Jaw Crusher Parameters on the Qualité of Primary Crushed Agrégats. Minérals Engineering, 151, Article ID: 106338.
https://doi.org/10.1016/j.mineng.2020.106338
[45]  Unland, G. (2001) Assessment of the Grindability of Cement Clinker, Part 1. Zkg International, 54, 61-65.
[46]  Bouchenafa, O., Hamzaoui, R., Florence, C. and Mansoutre, S. (2022) Cement and Clinker Production by Indirect Mechanosynthesis Process. Construction Materials, 2, 200-216.
https://doi.org/10.3390/constrmater2040014
[47]  Procès-verbal de laboratoire Heidelberg. (2021) LAB-QC-076-21 Analysis Report-Single sample. Analytic Center Lukala Heidelbergcement Group DRC.
[48]  Price, G.D. (1993) A. Putnis Introduction to Mineral Sciences. Cambridge (Cambridge University Press), 1992. xxii + 457 pp. Price£ 22. 95 (paperback);£ 60. 00 (hardback). Mineralogical Magazine, 57, 550-551.
https://doi.org/10.1180/minmag.1993.057.388.22
[49]  Cornelis, K. and Philpotts, A. (2013) Philpotts. Earth Materials: Introduction to Mineralogy and Petrology. Cambridge University Press, Cambridge.
[50]  Gato, J. (1972) Mineralogy, Science (Experimental). An Authorized Course of Instruction for the Quinmester Program, 25 p.
[51]  Spišiak, J., Vozárová, A., Vozár, J., Ferenc, Š., Šimonová, V. and Butek, J. (2021) Implication of Mineralogy and Isotope Data on the Origin of the Permian Basic Volcanic Rocks of the Hronicum (Slovakia, Western Carpathians). Minerals, 11, Article 841.
https://doi.org/10.3390/min11080841
[52]  Arai, S. (2019) Editorial for Special Issue “Petrology, Geochemistry and Mineralogy of the Mantle as Tools to Read Messages from the Earth’s Interior”. Minerals, 9, Article 151.
https://doi.org/10.3390/min9030151
[53]  Schulz, B., Sandmann, D. and Gilbricht, S. (2020) SEM-Based Automated Mineralogy and Its Application in Geo- and Material Sciences. Minerals, 10, Article 1004.
https://doi.org/10.3390/min10111004
[54]  Gupta, A. and Yan, D. (2016) Mineral Processing Design and Operations. 2nd Edition, Elsevier, Amsterdam, 123-152.
[55]  Cisternas, L.A., Lucay, F.A. and Botero, Y.L. (2020) Trends in Modeling, Design, and Optimization of Multiphase Systems in Minerals Processing. Minerals, 10, Article 22.
https://doi.org/10.3390/min10010022
[56]  Jean-Paul Duroudier. (2016) 4-Crushers and Grinders except Ball Mills and Rod Mills. Size Reduction of Divided Solids, 99-146.
https://doi.org/10.1016/B978-1-78548-185-7.50004-7
[57]  Austin, L.G. and Schneider, C.L. (2022) A Kinetic Model for Size Reduction in a Pilot Scale Tower Mill: Model Verification. Minerals, 12, Article 679.
https://doi.org/10.3390/min12060679
[58]  Fuerstenau, D.W., Abouzeid, A.Z.M. and Phatak, P.B. (2010) Effect of Particulate Environment on the Kinetics and Energetics of Dry Ball Milling. International Journal of Mineral Processing, 97, 52-58.
https://doi.org/10.1016/j.minpro.2010.08.001
[59]  Bernotat, S. and Schonert, K. (1998) Size Reduction. In: Ullmann, F. Ed., Ullmann’s Encyclopedia of sIndustrial Chemistry. VCH Verlagsgesellschaft, Weinheim, Vol. B2, 5.1-5.39.
[60]  LePree, J. (2018) Improving the Daily Grind: New Milling, Grinding and Size-Reduction Equipment Helps Processors Obtain Better Efficiencies and Develop New Products. Chemical Engineering, 125, 4 p.
[61]  Kalala, G.N., Chiementin, X., Rasolofondraibe, L., Boujelben, A. and Kilundu, B. (2022) Modeling Impulsive Ball Mill Forces Effects on the Dynamic Behavior of a Single-Stage Gearbox. Machines, 10, Article 226.
https://doi.org/10.3390/machines10040226
[62]  Carman, P.C. (1937) The Determination of the Specific Surface Area of Powders I. Journal of the Society of Chemical Industry, 57, 225-234.
[63]  Włodarczyk-Stasiak, M. and Mazurek, A. (2021) The Use of Starch Drying Kinetics Curves for Experimental Determination of Its Specific Surface Area. Molecules, 26, Article 5508.
https://doi.org/10.3390/molecules26185508
[64]  Hyndman, R., Koehler, A., Ord, K. and Snyder, R. (2008) Forecasting with Exponential Smoothing: The State Space Approach. In: Bühlmann, P., Diggle, P., Gather, U. and Zeger, S., Eds., Springer Science & Business Media, Springer, Berlin.
https://doi.org/10.1007/978-3-540-71918-2
[65]  Shi, Y., Tang, S. and Li, J. (2020) A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme. Risks, 8, Article 67.
https://doi.org/10.3390/risks8030067
[66]  Benzer, H. (2005) Modeling and Simulation of a Fully Air Swept Ball Mill in a Raw Material Grinding Circuit. Powder Technology, 150, 145-154.
https://doi.org/10.1016/j.powtec.2004.11.009
[67]  Venkatesh, S., Ramkumar, K. and Amirtharajan, R. (2020) Predictive Controller Design for a Cement Ball Mill Grinding Process under Larger Heterogeneities in Clinker Using State-Space Models. Designs, 4, Article 36.
https://doi.org/10.3390/designs4030036
[68]  Qin, Y.H., Han, Y.X., Gao, P., Li, Y.J. and Yuan, S. (2022) Characterization of Chalcopyrite Ore Under High Voltage Pulse Discharge: Particle Size Distribution, Fractal Dimension, Specific Energy Consumption, Grinding Kinetics. Minerals Engineering, 184, Article ID: 107631.
https://doi.org/10.1016/j.mineng.2022.107631
[69]  Syed, F.S. (2018) Hashim and Hashim Hussin. Journal of Physics: Conference Series, 1082, e012091.
https://doi.org/10.1088/1742-6596/1082/1/012091
[70]  King, R.P. (2012) Modelling and Simulation of Mineral Processing Systems. 2nd Edition, Englewood, 457 p.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413