全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

lncRNA在肺动脉高压血管平滑肌细胞中的作用
The Effect of lncRNA in Vascular Smooth Muscle Cells of Pulmonary Hypertension

DOI: 10.12677/HJBM.2024.141001, PP. 1-20

Keywords: 肺动脉高压,长链非编码RNA,肺动脉平滑肌细胞
Pulmonary Hypertension
, Long Non-Coding RNA, Pulmonary Artery Smooth Muscle Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

肺动脉高压(pulmonary hypertension, PH)是一种病因复杂的进行性疾病,目前仍无法治愈,其病理特征主要是肺血管明显重构、肺动脉压力升高及右心室肥厚。长链非编码RNA (lncRNA)是一类长度超过200 nt不具有编码蛋白能力的RNA。近年来,越来越多的研究发现lncRNA在PH发生机制中发挥重要作用。抗凋亡、过度增殖和迁移是肺动脉平滑肌细胞(PASMCs)失调导致血管重构的主要机制,而血管重构是PH发病机制的关键因素。本文主要概述在PH中调节PASMCs功能的lncRNA及其作用机制。
Pulmonary hypertension (PH) is a progressive disease with complex etiology, which is still incurable, and its pathological characteristics are mainly significant pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy. Long non-coding RNA (lncRNA) is a class of RNA longer than 200 nt that cannot encode proteins. Recently, more and more studies have found that lncRNA plays an important role in the pathogenesis of PH. Pulmonary vascular remodeling caused by excessive proliferation, migration and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key in the pathogenesis of PH. This paper mainly reviewed the molecular mechanism of lncRNA regulating PASMCs function and participating in the development of PH.

References

[1]  Hassoun, P.M. (2021) Pulmonary Arterial Hypertension. The New England Journal of Medicine, 385, 2361-2376.
https://doi.org/10.1056/NEJMra2000348
[2]  Ruopp, N.F. and Cockrill, B.A. (2022) Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA, 327, 1379-1391.
https://doi.org/10.1001/jama.2022.4402
[3]  Han, B., Bu, P., Meng, X., et al. (2017) Microarray Profiling of Long Non-Coding RNAs Associated with Idiopathic Pulmonary Arterial Hypertension. Experimental and Therapeutic Medicine, 13, 2657-2666.
https://doi.org/10.3892/etm.2017.4355
[4]  Okazaki, Y., Furuno, M., Kasukawa, T., et al. (2002) Analysis of the Mouse Transcriptome Based on Functional Annotation of 60,770 Full-Length cDNAs. Nature, 420, 563-73.
https://doi.org/10.1038/nature01266
[5]  Mattick, J.S. and Makunin, I.V. (2006) Non-Coding RNA. Human Molecular Genetics, 15, R17-R29.
https://doi.org/10.1093/hmg/ddl046
[6]  Han, Y., Ali, M.K., Dua, K., et al. (2021) Role of Long Non-Coding RNAs in Pulmonary Arterial Hypertension. Cell, 10, Article No. 1892.
https://doi.org/10.3390/cells10081892
[7]  Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Human Molecular Genetics, 10, 155-159.
https://doi.org/10.1038/nrg2521
[8]  Beermann, J., Piccoli, M.T., Viereck, J., et al. (2016) Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews, 96, 1297-1325.
https://doi.org/10.1152/physrev.00041.2015
[9]  Sun, M., Nie, F., Wang, Y., et al. (2016) LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT. Cancer Research, 76, 6299-6310.
https://doi.org/10.1158/0008-5472.CAN-16-0356
[10]  Gasri-Plotnitsky, L., Ovadia, A., Shamalov, K., et al. (2017) A Novel lncRNA, GASL1, Inhibits Cell Proliferation and Restricts E2F1 Activity. Oncotarget, 8, 23775-23786.
https://doi.org/10.18632/oncotarget.15864
[11]  Peng, W.X., Koirala, P. and Mo, Y.Y. (2017) LncRNA-Mediated Regulation of Cell Signaling in Cancer. Oncogene, 36, 5661-5667.
https://doi.org/10.1038/onc.2017.184
[12]  Leeper, N.J. and Maegdefessel, L. (2018) Non-Coding RNAs: Key Regulators of Smooth Muscle Cell Fate in Vascular Disease. Cardiovascular Research, 114, 611-621.
https://doi.org/10.1093/cvr/cvx249
[13]  Haemmig, S., Simion, V. and Feinberg, M.W. (2018) Long Non-Coding RNAs in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 5, Article No. 22.
https://doi.org/10.3389/fcvm.2018.00022
[14]  Leimena, C. and Qiu, H. (2018) Non-Coding RNA in the Pathogenesis, Progression and Treatment of Hypertension. International Journal of Molecular Sciences, 19, Article No. 927.
https://doi.org/10.3390/ijms19040927
[15]  Chi, Y., Wang, D., Wang, J., et al. (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells, 8, Article No. 1015.
https://doi.org/10.3390/cells8091015
[16]  Simion, V., Haemmig, S. and Feinberg, M.W. (2019) LncRNAs in Vascular Biology and Disease. Vascular Pharmacology, 114, 145-156.
https://doi.org/10.1016/j.vph.2018.01.003
[17]  Wolowiec, L., Medlewska, M., Osiak, J., et al. (2023) MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. International Journal of Molecular Sciences, 24, Article No. 9735.
https://doi.org/10.3390/ijms24119735
[18]  WKovacs, G., Dumitrescu, D., Barner, A., et al. (2018) Definition, Clinical Classification and Initial Diagnosis of Pulmonary Hypertension: Updated Recommendations from the Cologne Consensus Conference 2018. International Journal of Cardiology, 272S, 11-19.
https://doi.org/10.1016/j.ijcard.2018.08.083
[19]  Vaillancourt, M., Ruffenach, G., Meloche, J., et al. (2015) Adaptation and Remodelling of the Pulmonary Circulation in Pulmonary Hypertension. Canadian Journal of Cardiology, 31, 407-415.
https://doi.org/10.1016/j.cjca.2014.10.023
[20]  Sommer, N., Ghofrani, H.A., Pak, O., et al. (2021) Current and Future Treatments of Pulmonary Arterial Hypertension. British Journal of Pharmacology, 178, 6-30.
https://doi.org/10.1111/bph.15016
[21]  Leopold, J.A. and Maron, B.A. (2016) Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 17, Article No. 761.
https://doi.org/10.3390/ijms17050761
[22]  Price, L.C., Wort, S.J., Perros, F., et al. (2012) Inflammation in Pulmonary Arterial Hypertension. Chest, 141, 210-221.
https://doi.org/10.1378/chest.11-0793
[23]  Nogueira-Ferreira, R., Vitorino, R., Ferreira, R., et al. (2015) Exploring the Monocrotaline Animal Model for the Study of Pulmonary Arterial Hypertension: A Network Approach. Pulmonary Pharmacology & Therapeutics, 35, 8-16.
https://doi.org/10.1016/j.pupt.2015.09.007
[24]  Rieg, A.D., Suleiman, S., Anker, C., et al. (2018) PDGF-BB Regulates the Pulmonary Vascular Tone: Impact of Prostaglandins, Calcium, MAPK- and PI3K/AKT/mTOR Signalling and Actin Polymerisation in Pulmonary Veins of Guinea Pigs. Respiratory Research, 19, Article No. 120.
https://doi.org/10.1186/s12931-018-0829-5
[25]  Qian, Z., Li, Y., Chen, J., et al. (2017) miR-4632 Mediates PDGF-BB-Induced Proliferation and Antiapoptosis of Human Pulmonary Artery Smooth Muscle Cells via Targeting cJUN. American Journal of Physiology-Cell Physiology, 313, C380-C391.
https://doi.org/10.1152/ajpcell.00061.2017
[26]  Tan, W.S.D., Liao, W., Zhou, S., et al. (2018) Targeting the Renin-Angiotensin System as Novel Therapeutic Strategy for Pulmonary Diseases. Current Opinion in Pharmacology, 40, 9-17.
https://doi.org/10.1016/j.coph.2017.12.002
[27]  Viswanathan, G., Mamazhakypov, A., Schermuly, R.T., et al. (2018) The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 5, Article No. 179.
https://doi.org/10.3389/fcvm.2018.00179
[28]  De Man, F.S., Tu, L., Handoko, M.L., et al. (2012) Dysregulated Renin-Angiotensin-Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 780-790.
https://doi.org/10.1164/rccm.201203-0411OC
[29]  Gupta, V.S. and Harting, M.T. (2020) Congenital Diaphragmatic Hernia-Associated Pulmonary Hypertension. Seminars in Perinatology, 44, Article ID: 151167.
https://doi.org/10.1053/j.semperi.2019.07.006
[30]  Longoni, M., Russell, M.K., High, F.A., et al. (2015) Prevalence and Penetrance of ZFPM2 Mutations and Deletions Causing Congenital Diaphragmatic Hernia. Clinical Genetics, 87, 362-367.
https://doi.org/10.1111/cge.12395
[31]  McCulley, D.J., Wienhold, M.D., Hines, E.A., et al. (2018) PBX Transcription Factors Drive Pulmonary Vascular Adaptation to Birth. Journal of Clinical Investigation, 128, 655-667.
https://doi.org/10.1172/JCI93395
[32]  Cao, Y., Yang, Y., Wang, L., et al. (2018) Analyses of Long Non-Coding RNA and mRNA Profiles in Right Ventricle Myocardium of Acute Right Heart Failure in Pulmonary Arterial Hypertension Rats. Biomedicine & Pharmacotherapy, 106, 1108-1115.
https://doi.org/10.1016/j.biopha.2018.07.057
[33]  Zahid, K.R., Raza, U., Chen, J., et al. (2020) Pathobiology of Pulmonary Artery Hypertension: Role of Long Non-Coding RNAs. Cardiovascular Research, 116, 1937-1947.
https://doi.org/10.1093/cvr/cvaa050
[34]  Awad, K.S., West, J.D., de Jesus Perez, V., et al. (2016) Novel Signaling Pathways in Pulmonary Arterial Hypertension (2015 Grover Conference Series). Pulmonary Circulation, 6, 285-294.
https://doi.org/10.1086/688034
[35]  Wilson, J.L., Yu, J., Taylor, L., et al. (2015) Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLOS ONE, 14, e0123662.
https://doi.org/10.1371/journal.pone.0123662
[36]  Wang, J., Feng, W., Li, F., et al. (2019) SphK1/S1P Mediates TGF-β1-Induced Proliferation of Pulmonary Artery Smooth Muscle Cells and Its Potential Mechanisms. Pulmonary Circulation, 9, 1-8.
https://doi.org/10.1177/2045894018816977
[37]  Wang, D., Xu, H., Wu, B., et al. (2019) Long Non?Coding RNA MALAT1 Sponges miR?124?3p.1/KLF5 to Promote Pulmonary Vascular Remodeling and Cell Cycle Progression of Pulmonary Artery Hypertension. International Journal of Molecular Medicine, 44, 871-884.
https://doi.org/10.3892/ijmm.2019.4256
[38]  Chen, J., Guo, J., Cui, X., et al. (2018) The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 58, 181-193.
https://doi.org/10.1165/rcmb.2017-0111OC
[39]  Juan, V., Crain, C. and Wilson, C. (2000) Evidence for Evolutionarily Conserved Secondary Structure in the H19 Tumor Suppressor RNA. Nucleic Acids Research, 28, 1221-1227.
https://doi.org/10.1093/nar/28.5.1221
[40]  Cai, X. and Cullen, B.R. (2007) The Imprinted H19 Noncoding RNA Is a Primary microRNA Precursor. RNA, 13, 313-316.
https://doi.org/10.1261/rna.351707
[41]  Huang, S.F., Zhao, G., Peng, X.F., et al. (2021) The Pathogenic Role of Long Non-Coding RNA H19 in Atherosclerosis via the miR-146a-5p/ANGPTL4 Pathway. Frontiers in Cardiovascular Medicine, 8, Article ID: 770163.
https://doi.org/10.3389/fcvm.2021.770163
[42]  Pan, J.X. (2017) LncRNA H19 Promotes Atherosclerosis by Regulating MAPK and NF-kB Signaling Pathway. European Review for Medical and Pharmacological Sciences, 21, 322-328.
[43]  Kallen, A.N., Zhou, X.B., Xu, J., et al. (2013) The Imprinted H19 lncRNA Antagonizes let-7 microRNAs. Molecular Cell, 52, 101-112.
https://doi.org/10.1016/j.molcel.2013.08.027
[44]  Su, H., Xu, X., Yan, C., et al. (2018) LncRNA H19 Promotes the Proliferation of Pulmonary Artery Smooth Muscle Cells through AT1R via Sponging let-7b in Monocrotaline-Induced Pulmonary Arterial Hypertension. Respiratory Research, 19, Article No. 254.
https://doi.org/10.1186/s12931-018-0956-z
[45]  Wang, R., Zhou, S., Wu, P., et al. (2018) Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin. Molecular Therapy Nucleic Acids, 13, 44-54.
https://doi.org/10.1016/j.omtn.2018.08.015
[46]  Omura, J., Habbout, K., Shimauchi, T., et al. (2020) Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 142, 1464-1484.
https://doi.org/10.1161/CIRCULATIONAHA.120.047626
[47]  Yang, L., Liang, H., Shen, L., et al. (2019) LncRNA Tug1 Involves in the Pulmonary Vascular Remodeling in Mice with Hypoxic Pulmonary Hypertension via the microRNA-374c-Mediated Foxc1. Life Sciences, 237, Article ID: 116769.
https://doi.org/10.1016/j.lfs.2019.116769
[48]  Zhang, H., Liu, Y., Yan, L., et al. (2019) Long Noncoding RNA Hoxaas3 Contributes to Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation. Cardiovascular Research, 115, 647-657.
https://doi.org/10.1093/cvr/cvy250
[49]  Sun, Z., Nie, X., Sun, S., et al. (2017) Long Non-Coding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway. Cellular Physiology and Biochemistry, 42, 2569-2581.
https://doi.org/10.1159/000480218
[50]  Zhu, B., Gong, Y., Yan, G., et al. (2018) Down-Regulation of lncRNA MEG3 Promotes Hypoxia-Induced Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via Repressing PTEN by Sponging miR-21. Biochemical and Biophysical Research Communications, 495, 2125-2132.
https://doi.org/10.1016/j.bbrc.2017.11.185
[51]  Xing, Y., Zheng, X., Fu, Y., et al. (2019) Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension. Molecular Therapy, 27, 2166-2181.
https://doi.org/10.1016/j.ymthe.2019.07.022
[52]  Zhang, X., Hamblin, M.H. and Yin, K.J. (2017) The Long Noncoding RNA Malat1: Its Physiological and Pathophysiological Functions. RNA Biology, 14, 1705-1714.
https://doi.org/10.1080/15476286.2017.1358347
[53]  Brock, M., Schuoler, C., Leuenberger, C., et al. (2017) Analysis of Hypoxia-Induced Noncoding RNAs Reveals Metastasis-Associated Lung Adenocarcinoma Transcript 1 as an Important Regulator of Vascular Smooth Muscle Cell Proliferation. Experimental Biology and Medicine (Maywood), 242, 487-496.
https://doi.org/10.1177/1535370216685434
[54]  Zhuo, Y., Zeng, Q., Zhang, P., et al. (2017) Functional Polymorphism of lncRNA MALAT1 Contributes to Pulmonary Arterial Hypertension Susceptibility in Chinese People. Clinical Chemistry and Laboratory Medicine, 55, 38-46.
https://doi.org/10.1515/cclm-2016-0056
[55]  He, M., Shen, J., Zhang, C., et al. (2020) Long-Chain Non-Coding RNA Metastasis-Related Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes the Proliferation and Migration of Human Pulmonary Artery Smooth Muscle Cells (hPASMCs) by Regulating the MicroRNA-503 (miR-503)/Toll-Like Receptor 4 (TLR4) Signal Axis. Medical Science Monitor, 26, e923123.
https://doi.org/10.12659/MSM.923123
[56]  Zhou, H., Sun, L. and Wan, F. (2019) Molecular Mechanisms of TUG1 in the Proliferation, Apoptosis, Migration and Invasion of Cancer Cells. Oncology Letters, 18, 4393-4402.
https://doi.org/10.3892/ol.2019.10848
[57]  Wang, S., Cao, W., Gao, S., et al. (2019) TUG1 Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 35, 1534-1545.
https://doi.org/10.1016/j.cjca.2019.07.630
[58]  Yao, Q., Wang, C., Wang, Y., et al. (2022) The Integrated Comprehension of lncRNA HOXA-AS3 Implication on Human Diseases. Clinical and Translational Oncology, 24, 2342-2350.
https://doi.org/10.1007/s12094-022-02920-w
[59]  Li, Z.K., Gao, L.F., Zhu, X.A., et al. (2021) LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochemical Genetics, 59, 1158-1172.
https://doi.org/10.1007/s10528-021-10053-y
[60]  Zehendner, C.M., Valasarajan, C., Werner, A., et al. (2020) Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ. American Journal of Respiratory and Critical Care Medicine, 202, 1445-1457.
https://doi.org/10.1164/rccm.201910-2041OC
[61]  Wang, F., Li, X., Xie, X., et al. (2008) UCA1, a Non-Protein-Coding RNA Up-Regulated in Bladder Carcinoma and Embryo, Influencing Cell Growth and Promoting Invasion. FEBS Letters, 582, 1919-1927.
https://doi.org/10.1016/j.febslet.2008.05.012
[62]  He, A., Hu, R., Chen, Z., et al. (2017) Role of Long Noncoding RNA UCA1 as a Common Molecular Marker for Lymph Node Metastasis and Prognosis in Various Cancers: A Meta-Analysis. Oncotarget, 8, 1937-1943.
https://doi.org/10.18632/oncotarget.12463
[63]  Zhu, T.T., Sun, R.L., Yin, Y.L., et al. (2019) Long Noncoding RNA UCA1 Promotes the Proliferation of Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Pflügers Archiv, 471, 347-355.
https://doi.org/10.1007/s00424-018-2219-8
[64]  Lei, S., Peng, F., Li, M.L., et al. (2020) LncRNA-SMILR Modulates RhoA/ROCK Signaling by Targeting miR-141 to Regulate Vascular Remodeling in Pulmonary Arterial Hypertension. The American Journal of Physiology-Heart and Circulatory Physiology, 319, H377-H391.
https://doi.org/10.1152/ajpheart.00717.2019
[65]  Ballantyne, M.D., Pinel, K., Dakin, R., et al. (2016) Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation. Circulation, 133, 2050-2065.
https://doi.org/10.1161/CIRCULATIONAHA.115.021019
[66]  Mahmoud, A.D., Ballantyne, M.D., Miscianinov, V., et al. (2019) The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circulation Research, 125, 535-551.
https://doi.org/10.1161/CIRCRESAHA.119.314876
[67]  Carpenter, S., Aiello, D., Atianand, M.K., et al. (2013) A Long Noncoding RNA Mediates both Activation and Repression of Immune Response Genes. Science, 341, 789-792.
https://doi.org/10.1126/science.1240925
[68]  Xue, Z., Zhang, Z., Liu, H., et al. (2019) lincRNA-Cox2 Regulates NLRP3 Inflammasome and Autophagy Mediated Neuroinflammation. Cell Death & Differentiation, 26, 130-145.
https://doi.org/10.1038/s41418-018-0105-8
[69]  Cheng, G., He, L. and Zhang, Y. (2020) LincRNA-Cox2 Promotes Pulmonary Arterial Hypertension by Regulating the let-7a-Mediated STAT3 Signaling Pathway. Molecular and Cellular Biochemistry, 475, 239-247.
https://doi.org/10.1007/s11010-020-03877-6
[70]  Leung, A., Trac, C., Jin, W., et al. (2013) Novel Long Noncoding RNAs Are Regulated by Angiotensin II in Vascular Smooth Muscle Cells. Circulation Research, 113, 266-278.
https://doi.org/10.1161/CIRCRESAHA.112.300849
[71]  Nie, X., Chen, Y., Tan, J., et al. (2019) MicroRNA-221-3p Promotes Pulmonary Artery Smooth Muscle Cells Proliferation by Targeting AXIN2 during Pulmonary Arterial Hypertension. Vascular Pharmacology, 116, 24-35.
https://doi.org/10.1016/j.vph.2017.07.002
[72]  Wang, H., Qin, R. and Cheng, Y. (2020) LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222. Shock, 53, 723-729.
https://doi.org/10.1097/SHK.0000000000001410
[73]  Jandl, K., Thekkekara Puthenparampil, H., Marsh, L.M., et al. (2019) Long Non-Coding RNAs Influence the Transcriptome in Pulmonary Arterial Hypertension: The Role of PAXIP1-AS1. The Journal of Pathology, 247, 357-370.
https://doi.org/10.1002/path.5195
[74]  Song, R., Lei, S., Yang, S., et al. (2021) LncRNA PAXIP1-AS1 Fosters the Pathogenesis of Pulmonary Arterial Hypertension via ETS1/WIPF1/RhoA Axis. Journal of Cellular and Molecular Medicine, 25, 7321-7334.
https://doi.org/10.1111/jcmm.16761
[75]  Qin, Y., Zhu, B., Li, L., et al. (2021) Overexpressed lncRNA AC068039.4 Contributes to Proliferation and Cell Cycle Progression of Pulmonary Artery Smooth Muscle Cells via Sponging miR-26a-5p/TRPC6 in Hypoxic Pulmonary Arterial Hypertension. Shock, 55, 244-255.
https://doi.org/10.1097/SHK.0000000000001606
[76]  Wang, L., Han, S., Jin, G., et al. (2014) Linc00963: A Novel, Long Non-Coding RNA Involved in the Transition of Prostate Cancer from Androgen-Dependence to Androgen-Independence. International Journal of Oncology, 44, 2041-2049.
https://doi.org/10.3892/ijo.2014.2363
[77]  Xie, Z., Zhong, C., Shen, J., et al. (2022) LINC00963: A Potential Cancer Diagnostic and Therapeutic Target. Biomedicine & Pharmacotherapy, 150, Article ID: 113019.
https://doi.org/10.1016/j.biopha.2022.113019
[78]  Yang, C., Rong, R., Li, Y., et al. (2022) Decrease in LINC00963 Attenuates the Progression of Pulmonary Arterial Hypertension via microRNA-328-3p/Profilin 1 Axis. Journal of Clinical Laboratory Analysis, 36, e24383.
https://doi.org/10.1002/jcla.24383
[79]  Huppi, K., Volfovsky, N., Runfola, T., et al. (2008) The Identification of microRNAs in a Genomically Unstable Region of Human Chromosome 8q24. Molecular Cancer Research, 6, 212-221.
https://doi.org/10.1158/1541-7786.MCR-07-0105
[80]  Jin, K., Wang, S., Zhang, Y., et al. (2019) Long Non-Coding RNA PVT1 Interacts with MYC and Its Downstream Molecules to Synergistically Promote Tumorigenesis. Cellular and Molecular Life Sciences, 76, 4275-4289.
https://doi.org/10.1007/s00018-019-03222-1
[81]  Xia, X., Huang, L., Zhou, S., et al. (2023) Hypoxia-Induced Long Non-Coding RNA Plasmacytoma Variant Translocation 1 Upregulation Aggravates Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating Autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf Signaling Pathways. International Journal of Cardiology, 370, 368-377.
https://doi.org/10.1016/j.ijcard.2022.09.060
[82]  Yu, X., Li, Z., Zheng, H., et al. (2017) NEAT1: A Novel Cancer-Related Long Non-Coding RNA. Cell Proliferation, 50, e12329.
https://doi.org/10.1111/cpr.12329
[83]  Dou, X., Ma, Y., Qin, Y., et al. (2021) NEAT1 Silencing Alleviates Pulmonary Arterial Smooth Muscle Cell Migration and Proliferation under Hypoxia through Regulation of miR?34a?5p/KLF4 in Vitro. Molecular Medicine Reports, 24, Article No. 749.
https://doi.org/10.3892/mmr.2021.12389
[84]  Wu, Z.H., Zhou, J., Hu, G.H., et al. (2021) LncRNA CASC2 Inhibits Lung Adenocarcinoma Progression through Forming Feedback Loop with miR-21/p53 Axis. The Kaohsiung Journal of Medical Sciences, 37, 675-685.
https://doi.org/10.1002/kjm2.12386
[85]  Gong, J., Chen, Z., Chen, Y., et al. (2019) Long Non-Coding RNA CASC2 Suppresses Pulmonary Artery Smooth Muscle Cell Proliferation and Phenotypic Switch in Hypoxia-Induced Pulmonary Hypertension. Respiratory Research, 20, Article No. 53.
https://doi.org/10.1186/s12931-019-1018-x
[86]  Han, Y., Liu, Y., Yang, C., et al. (2020) LncRNA CASC2 Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Regulating the miR-222/ING5 Axis. Cell & Molecular Bio Letters, 25, Article No. 21.
https://doi.org/10.1186/s11658-020-00215-y
[87]  Liu, Y., Hu, R., Zhu, J., et al. (2021) The lncRNA PAHRF Functions as a Competing Endogenous RNA to Regulate MST1 Expression by Sponging miR-23a-3p in Pulmonary Arterial Hypertension. Vascular Pharmacology, 139, Article ID: 106886.
https://doi.org/10.1016/j.vph.2021.106886
[88]  Kino, T., Hurt, D.E., Ichijo, T., Nader, N. and Chrousos, G.P. (2010) Noncoding RNA gas5 Is a Growth Arrest and Starvation-Associated Repressor of the Glucocorticoid Receptor. Science Signaling, 3, ra8.
https://doi.org/10.1126/scisignal.2000568
[89]  Gao, Z.Q., Wang, J.F., Chen, D.H., et al. (2017) Long Non-Coding RNA GAS5 Suppresses Pancreatic Cancer Metastasis through Modulating miR-32-5p/PTEN Axis. Cell & Bioscience, 7, Article No. 66.
https://doi.org/10.1186/s13578-017-0192-0
[90]  Li, Y., Gu, J. and Lu, H. (2017) The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells through the PTEN/Akt/mTOR Pathway. Digestive Diseases and Sciences, 62, 3426-3437.
https://doi.org/10.1007/s10620-017-4831-4
[91]  Tang, R., Zhang, G., Wang, Y.C., et al. (2017) The Long Non-Coding RNA GAS5 Regulates Transforming Growth Factor β (TGF-β)-Induced Smooth Muscle Cell Differentiation via RNA Smad-Binding Elements. Journal of Biological Chemistry, 292, 14270-14278.
https://doi.org/10.1074/jbc.M117.790030
[92]  Hao, X., Li, H., Zhang, P., et al. (2020) Down-Regulation of lncRNA Gas5 Promotes Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating KCNK3 Expression. European Journal of Pharmacology, 889, Article ID: 173618.
https://doi.org/10.1016/j.ejphar.2020.173618
[93]  Feng, X., Wang, K., Yang, T., et al. (2022) LncRNA-GAS5/miR-382-3p Axis Inhibits Pulmonary Artery Remodeling and Promotes Autophagy in Chronic Thromboembolic Pulmonary Hypertension. Genes Genomics, 44, 395-404.
https://doi.org/10.1007/s13258-021-01202-z
[94]  Liu, Y., Zhang, H., Li, Y., et al. (2020) Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells. Hypertension, 76, 1124-1133.
https://doi.org/10.1161/HYPERTENSIONAHA.120.14644
[95]  Li, Y., Zhang, J., Sun, H., et al. (2021) lnc-Rps4l-Encoded Peptide RPS4XL Regulates RPS6 Phosphorylation and Inhibits the Proliferation of PASMCs Caused by Hypoxia. Molecular Therapy, 29, 1411-1424.
https://doi.org/10.1016/j.ymthe.2021.01.005
[96]  Li, Y., Zhang, J., Sun, H., et al. (2022) RPS4XL Encoded by lnc-Rps4l Inhibits Hypoxia-Induced Pyroptosis by Binding HSC70 Glycosylation Site. Molecular Therapy Nucleic Acids, 28, 920-934.
https://doi.org/10.1016/j.omtn.2022.05.033
[97]  Liu, Y., Sun, Z., Zhu, J., et al. (2018) LncRNA-TCONS_00034812 in Cell Proliferation and Apoptosis of Pulmonary Artery Smooth Muscle Cells and Its Mechanism. Journal of Cellular Physiology, 233, 4801-4814.
https://doi.org/10.1002/jcp.26279
[98]  Lin, D., Zhang, X., Zhang, C., et al. (2021) LncRNA-TCONS_00034812 Is Upregulated in Atherosclerosis and Upregulates miR-21 through Methylation in Vascular Smooth Muscle Cells. Annals of Translational Medicine, 9, 1005.
https://doi.org/10.21037/atm-21-2632
[99]  Pasmant, E., Laurendeau, I., Héron, D., et al. (2007) Characterization of a Germ-Line Deletion, Including the Entire INK4/ARF Locus, in a Melanoma-Neural System Tumor Family: Identification of ANRIL, an Antisense Noncoding RNA Whose Expression Coclusters with ARF. Cancer Research, 67, 3963-3969.
https://doi.org/10.1158/0008-5472.CAN-06-2004
[100]  Chen, L., Qu, H., Guo, M., et al. (2020) ANRIL and Atherosclerosis. Journal of Clinical Pharmacy and Therapeutics, 45, 240-248.
https://doi.org/10.1111/jcpt.13060
[101]  Wang, S., Zhang, C. and Zhang, X. (2020) Downregulation of Long Non?Coding RNA ANRIL Promotes Proliferation and Migration in Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Molecular Medicine Reports, 21, 589-596.
https://doi.org/10.3892/mmr.2019.10887
[102]  Deng, L., Chen, J., Chen, B., et al. (2022) LncPTSR Triggers Vascular Remodeling in Pulmonary Hypertension by Regulating [Ca2+]i in Pulmonary Arterial Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 66, 524-538.
https://doi.org/10.1165/rcmb.2020-0480OC
[103]  Wu, G., Cai, J., Han, Y., et al. (2014) LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity. Circulation, 130, 1452-1465.
https://doi.org/10.1161/CIRCULATIONAHA.114.011675
[104]  Wang, H., He, F., Liang, B., et al. (2021) p53-Dependent LincRNA-p21 Protects against Proliferation and Anti-Apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. Journal of Cardiovascular Translational Research, 14, 426-440.
https://doi.org/10.1007/s12265-020-10074-9
[105]  Leisegang, M.S., Fork, C., Josipovic, I., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79.
https://doi.org/10.1161/CIRCULATIONAHA.116.026991
[106]  Wu, Q., Zhou, X., Wang, Y., et al. (2022) LncRNA GAS5 Promotes Spermidine-Induced Autophagy through the miRNA-31-5p/NAT8L Axis in Pulmonary Artery Endothelial Cells of Patients with CTEPH. Molecular Medicine Reports, 26, Article No. 297.
https://doi.org/10.3892/mmr.2022.12813
[107]  Gofrit, O.N., Benjamin, S., Halachmi, S., et al. (2014) DNA Based Therapy with Diphtheria Toxin-A BC-819: A Phase 2b Marker Lesion Trial in Patients with Intermediate Risk Nonmuscle Invasive Bladder Cancer. Journal of Urology, 191, 1697-1702.
https://doi.org/10.1016/j.juro.2013.12.011
[108]  Smaldone, M.C. and Davies, B.J. (2010) BC-819, a Plasmid Comprising the H19 Gene Regulatory Sequences and Diphtheria Toxin A, for the Potential Targeted Therapy of Cancers. Current Opinion in Molecular Therapeutics, 12, 607-616.
[109]  Gomes, C.P.C., Spencer, H., Ford, K.L., et al. (2017) The Function and Therapeutic Potential of Long Non-Coding RNAs in Cardiovascular Development and Disease. Molecular Therapy Nucleic Acids, 8, 494-507.
https://doi.org/10.1016/j.omtn.2017.07.014
[110]  Hassoun, P.M. (2021) Pulmonary Arterial Hypertension. The New England Journal of Medicine, 385, 2361-2376.
https://doi.org/10.1056/NEJMra2000348
[111]  Ruopp, N.F. and Cockrill, B.A. (2022) Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA, 327, 1379-1391.
https://doi.org/10.1001/jama.2022.4402
[112]  Han, B., Bu, P., Meng, X., et al. (2017) Microarray Profiling of Long Non-Coding RNAs Associated with Idiopathic Pulmonary Arterial Hypertension. Experimental and Therapeutic Medicine, 13, 2657-2666.
https://doi.org/10.3892/etm.2017.4355
[113]  Okazaki, Y., Furuno, M., Kasukawa, T., et al. (2002) Analysis of the Mouse Transcriptome Based on Functional Annotation of 60,770 Full-Length cDNAs. Nature, 420, 563-73.
https://doi.org/10.1038/nature01266
[114]  Mattick, J.S. and Makunin, I.V. (2006) Non-Coding RNA. Human Molecular Genetics, 15, R17-R29.
https://doi.org/10.1093/hmg/ddl046
[115]  Han, Y., Ali, M.K., Dua, K., et al. (2021) Role of Long Non-Coding RNAs in Pulmonary Arterial Hypertension. Cell, 10, Article No. 1892.
https://doi.org/10.3390/cells10081892
[116]  Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Human Molecular Genetics, 10, 155-159.
https://doi.org/10.1038/nrg2521
[117]  Beermann, J., Piccoli, M.T., Viereck, J., et al. (2016) Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews, 96, 1297-1325.
https://doi.org/10.1152/physrev.00041.2015
[118]  Sun, M., Nie, F., Wang, Y., et al. (2016) LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT. Cancer Research, 76, 6299-6310.
https://doi.org/10.1158/0008-5472.CAN-16-0356
[119]  Gasri-Plotnitsky, L., Ovadia, A., Shamalov, K., et al. (2017) A Novel lncRNA, GASL1, Inhibits Cell Proliferation and Restricts E2F1 Activity. Oncotarget, 8, 23775-23786.
https://doi.org/10.18632/oncotarget.15864
[120]  Peng, W.X., Koirala, P. and Mo, Y.Y. (2017) LncRNA-Mediated Regulation of Cell Signaling in Cancer. Oncogene, 36, 5661-5667.
https://doi.org/10.1038/onc.2017.184
[121]  Leeper, N.J. and Maegdefessel, L. (2018) Non-Coding RNAs: Key Regulators of Smooth Muscle Cell Fate in Vascular Disease. Cardiovascular Research, 114, 611-621.
https://doi.org/10.1093/cvr/cvx249
[122]  Haemmig, S., Simion, V. and Feinberg, M.W. (2018) Long Non-Coding RNAs in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 5, Article No. 22.
https://doi.org/10.3389/fcvm.2018.00022
[123]  Leimena, C. and Qiu, H. (2018) Non-Coding RNA in the Pathogenesis, Progression and Treatment of Hypertension. International Journal of Molecular Sciences, 19, Article No. 927.
https://doi.org/10.3390/ijms19040927
[124]  Chi, Y., Wang, D., Wang, J., et al. (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells, 8, Article No. 1015.
https://doi.org/10.3390/cells8091015
[125]  Simion, V., Haemmig, S. and Feinberg, M.W. (2019) LncRNAs in Vascular Biology and Disease. Vascular Pharmacology, 114, 145-156.
https://doi.org/10.1016/j.vph.2018.01.003
[126]  Wolowiec, L., Medlewska, M., Osiak, J., et al. (2023) MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. International Journal of Molecular Sciences, 24, Article No. 9735.
https://doi.org/10.3390/ijms24119735
[127]  WKovacs, G., Dumitrescu, D., Barner, A., et al. (2018) Definition, Clinical Classification and Initial Diagnosis of Pulmonary Hypertension: Updated Recommendations from the Cologne Consensus Conference 2018. International Journal of Cardiology, 272S, 11-19.
https://doi.org/10.1016/j.ijcard.2018.08.083
[128]  Vaillancourt, M., Ruffenach, G., Meloche, J., et al. (2015) Adaptation and Remodelling of the Pulmonary Circulation in Pulmonary Hypertension. Canadian Journal of Cardiology, 31, 407-415.
https://doi.org/10.1016/j.cjca.2014.10.023
[129]  Sommer, N., Ghofrani, H.A., Pak, O., et al. (2021) Current and Future Treatments of Pulmonary Arterial Hypertension. British Journal of Pharmacology, 178, 6-30.
https://doi.org/10.1111/bph.15016
[130]  Leopold, J.A. and Maron, B.A. (2016) Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 17, Article No. 761.
https://doi.org/10.3390/ijms17050761
[131]  Price, L.C., Wort, S.J., Perros, F., et al. (2012) Inflammation in Pulmonary Arterial Hypertension. Chest, 141, 210-221.
https://doi.org/10.1378/chest.11-0793
[132]  Nogueira-Ferreira, R., Vitorino, R., Ferreira, R., et al. (2015) Exploring the Monocrotaline Animal Model for the Study of Pulmonary Arterial Hypertension: A Network Approach. Pulmonary Pharmacology & Therapeutics, 35, 8-16.
https://doi.org/10.1016/j.pupt.2015.09.007
[133]  Rieg, A.D., Suleiman, S., Anker, C., et al. (2018) PDGF-BB Regulates the Pulmonary Vascular Tone: Impact of Prostaglandins, Calcium, MAPK- and PI3K/AKT/mTOR Signalling and Actin Polymerisation in Pulmonary Veins of Guinea Pigs. Respiratory Research, 19, Article No. 120.
https://doi.org/10.1186/s12931-018-0829-5
[134]  Qian, Z., Li, Y., Chen, J., et al. (2017) miR-4632 Mediates PDGF-BB-Induced Proliferation and Antiapoptosis of Human Pulmonary Artery Smooth Muscle Cells via Targeting cJUN. American Journal of Physiology-Cell Physiology, 313, C380-C391.
https://doi.org/10.1152/ajpcell.00061.2017
[135]  Tan, W.S.D., Liao, W., Zhou, S., et al. (2018) Targeting the Renin-Angiotensin System as Novel Therapeutic Strategy for Pulmonary Diseases. Current Opinion in Pharmacology, 40, 9-17.
https://doi.org/10.1016/j.coph.2017.12.002
[136]  Viswanathan, G., Mamazhakypov, A., Schermuly, R.T., et al. (2018) The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 5, Article No. 179.
https://doi.org/10.3389/fcvm.2018.00179
[137]  De Man, F.S., Tu, L., Handoko, M.L., et al. (2012) Dysregulated Renin-Angiotensin-Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 780-790.
https://doi.org/10.1164/rccm.201203-0411OC
[138]  Gupta, V.S. and Harting, M.T. (2020) Congenital Diaphragmatic Hernia-Associated Pulmonary Hypertension. Seminars in Perinatology, 44, Article ID: 151167.
https://doi.org/10.1053/j.semperi.2019.07.006
[139]  Longoni, M., Russell, M.K., High, F.A., et al. (2015) Prevalence and Penetrance of ZFPM2 Mutations and Deletions Causing Congenital Diaphragmatic Hernia. Clinical Genetics, 87, 362-367.
https://doi.org/10.1111/cge.12395
[140]  McCulley, D.J., Wienhold, M.D., Hines, E.A., et al. (2018) PBX Transcription Factors Drive Pulmonary Vascular Adaptation to Birth. Journal of Clinical Investigation, 128, 655-667.
https://doi.org/10.1172/JCI93395
[141]  Cao, Y., Yang, Y., Wang, L., et al. (2018) Analyses of Long Non-Coding RNA and mRNA Profiles in Right Ventricle Myocardium of Acute Right Heart Failure in Pulmonary Arterial Hypertension Rats. Biomedicine & Pharmacotherapy, 106, 1108-1115.
https://doi.org/10.1016/j.biopha.2018.07.057
[142]  Zahid, K.R., Raza, U., Chen, J., et al. (2020) Pathobiology of Pulmonary Artery Hypertension: Role of Long Non-Coding RNAs. Cardiovascular Research, 116, 1937-1947.
https://doi.org/10.1093/cvr/cvaa050
[143]  Awad, K.S., West, J.D., de Jesus Perez, V., et al. (2016) Novel Signaling Pathways in Pulmonary Arterial Hypertension (2015 Grover Conference Series). Pulmonary Circulation, 6, 285-294.
https://doi.org/10.1086/688034
[144]  Wilson, J.L., Yu, J., Taylor, L., et al. (2015) Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLOS ONE, 14, e0123662.
https://doi.org/10.1371/journal.pone.0123662
[145]  Wang, J., Feng, W., Li, F., et al. (2019) SphK1/S1P Mediates TGF-β1-Induced Proliferation of Pulmonary Artery Smooth Muscle Cells and Its Potential Mechanisms. Pulmonary Circulation, 9, 1-8.
https://doi.org/10.1177/2045894018816977
[146]  Wang, D., Xu, H., Wu, B., et al. (2019) Long Non?Coding RNA MALAT1 Sponges miR?124?3p.1/KLF5 to Promote Pulmonary Vascular Remodeling and Cell Cycle Progression of Pulmonary Artery Hypertension. International Journal of Molecular Medicine, 44, 871-884.
https://doi.org/10.3892/ijmm.2019.4256
[147]  Chen, J., Guo, J., Cui, X., et al. (2018) The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 58, 181-193.
https://doi.org/10.1165/rcmb.2017-0111OC
[148]  Juan, V., Crain, C. and Wilson, C. (2000) Evidence for Evolutionarily Conserved Secondary Structure in the H19 Tumor Suppressor RNA. Nucleic Acids Research, 28, 1221-1227.
https://doi.org/10.1093/nar/28.5.1221
[149]  Cai, X. and Cullen, B.R. (2007) The Imprinted H19 Noncoding RNA Is a Primary microRNA Precursor. RNA, 13, 313-316.
https://doi.org/10.1261/rna.351707
[150]  Huang, S.F., Zhao, G., Peng, X.F., et al. (2021) The Pathogenic Role of Long Non-Coding RNA H19 in Atherosclerosis via the miR-146a-5p/ANGPTL4 Pathway. Frontiers in Cardiovascular Medicine, 8, Article ID: 770163.
https://doi.org/10.3389/fcvm.2021.770163
[151]  Pan, J.X. (2017) LncRNA H19 Promotes Atherosclerosis by Regulating MAPK and NF-kB Signaling Pathway. European Review for Medical and Pharmacological Sciences, 21, 322-328.
[152]  Kallen, A.N., Zhou, X.B., Xu, J., et al. (2013) The Imprinted H19 lncRNA Antagonizes let-7 microRNAs. Molecular Cell, 52, 101-112.
https://doi.org/10.1016/j.molcel.2013.08.027
[153]  Su, H., Xu, X., Yan, C., et al. (2018) LncRNA H19 Promotes the Proliferation of Pulmonary Artery Smooth Muscle Cells through AT1R via Sponging let-7b in Monocrotaline-Induced Pulmonary Arterial Hypertension. Respiratory Research, 19, Article No. 254.
https://doi.org/10.1186/s12931-018-0956-z
[154]  Wang, R., Zhou, S., Wu, P., et al. (2018) Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin. Molecular Therapy Nucleic Acids, 13, 44-54.
https://doi.org/10.1016/j.omtn.2018.08.015
[155]  Omura, J., Habbout, K., Shimauchi, T., et al. (2020) Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 142, 1464-1484.
https://doi.org/10.1161/CIRCULATIONAHA.120.047626
[156]  Yang, L., Liang, H., Shen, L., et al. (2019) LncRNA Tug1 Involves in the Pulmonary Vascular Remodeling in Mice with Hypoxic Pulmonary Hypertension via the microRNA-374c-Mediated Foxc1. Life Sciences, 237, Article ID: 116769.
https://doi.org/10.1016/j.lfs.2019.116769
[157]  Zhang, H., Liu, Y., Yan, L., et al. (2019) Long Noncoding RNA Hoxaas3 Contributes to Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation. Cardiovascular Research, 115, 647-657.
https://doi.org/10.1093/cvr/cvy250
[158]  Sun, Z., Nie, X., Sun, S., et al. (2017) Long Non-Coding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway. Cellular Physiology and Biochemistry, 42, 2569-2581.
https://doi.org/10.1159/000480218
[159]  Zhu, B., Gong, Y., Yan, G., et al. (2018) Down-Regulation of lncRNA MEG3 Promotes Hypoxia-Induced Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via Repressing PTEN by Sponging miR-21. Biochemical and Biophysical Research Communications, 495, 2125-2132.
https://doi.org/10.1016/j.bbrc.2017.11.185
[160]  Xing, Y., Zheng, X., Fu, Y., et al. (2019) Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension. Molecular Therapy, 27, 2166-2181.
https://doi.org/10.1016/j.ymthe.2019.07.022
[161]  Zhang, X., Hamblin, M.H. and Yin, K.J. (2017) The Long Noncoding RNA Malat1: Its Physiological and Pathophysiological Functions. RNA Biology, 14, 1705-1714.
https://doi.org/10.1080/15476286.2017.1358347
[162]  Brock, M., Schuoler, C., Leuenberger, C., et al. (2017) Analysis of Hypoxia-Induced Noncoding RNAs Reveals Metastasis-Associated Lung Adenocarcinoma Transcript 1 as an Important Regulator of Vascular Smooth Muscle Cell Proliferation. Experimental Biology and Medicine (Maywood), 242, 487-496.
https://doi.org/10.1177/1535370216685434
[163]  Zhuo, Y., Zeng, Q., Zhang, P., et al. (2017) Functional Polymorphism of lncRNA MALAT1 Contributes to Pulmonary Arterial Hypertension Susceptibility in Chinese People. Clinical Chemistry and Laboratory Medicine, 55, 38-46.
https://doi.org/10.1515/cclm-2016-0056
[164]  He, M., Shen, J., Zhang, C., et al. (2020) Long-Chain Non-Coding RNA Metastasis-Related Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes the Proliferation and Migration of Human Pulmonary Artery Smooth Muscle Cells (hPASMCs) by Regulating the MicroRNA-503 (miR-503)/Toll-Like Receptor 4 (TLR4) Signal Axis. Medical Science Monitor, 26, e923123.
https://doi.org/10.12659/MSM.923123
[165]  Zhou, H., Sun, L. and Wan, F. (2019) Molecular Mechanisms of TUG1 in the Proliferation, Apoptosis, Migration and Invasion of Cancer Cells. Oncology Letters, 18, 4393-4402.
https://doi.org/10.3892/ol.2019.10848
[166]  Wang, S., Cao, W., Gao, S., et al. (2019) TUG1 Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 35, 1534-1545.
https://doi.org/10.1016/j.cjca.2019.07.630
[167]  Yao, Q., Wang, C., Wang, Y., et al. (2022) The Integrated Comprehension of lncRNA HOXA-AS3 Implication on Human Diseases. Clinical and Translational Oncology, 24, 2342-2350.
https://doi.org/10.1007/s12094-022-02920-w
[168]  Li, Z.K., Gao, L.F., Zhu, X.A., et al. (2021) LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochemical Genetics, 59, 1158-1172.
https://doi.org/10.1007/s10528-021-10053-y
[169]  Zehendner, C.M., Valasarajan, C., Werner, A., et al. (2020) Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ. American Journal of Respiratory and Critical Care Medicine, 202, 1445-1457.
https://doi.org/10.1164/rccm.201910-2041OC
[170]  Wang, F., Li, X., Xie, X., et al. (2008) UCA1, a Non-Protein-Coding RNA Up-Regulated in Bladder Carcinoma and Embryo, Influencing Cell Growth and Promoting Invasion. FEBS Letters, 582, 1919-1927.
https://doi.org/10.1016/j.febslet.2008.05.012
[171]  He, A., Hu, R., Chen, Z., et al. (2017) Role of Long Noncoding RNA UCA1 as a Common Molecular Marker for Lymph Node Metastasis and Prognosis in Various Cancers: A Meta-Analysis. Oncotarget, 8, 1937-1943.
https://doi.org/10.18632/oncotarget.12463
[172]  Zhu, T.T., Sun, R.L., Yin, Y.L., et al. (2019) Long Noncoding RNA UCA1 Promotes the Proliferation of Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Pflügers Archiv, 471, 347-355.
https://doi.org/10.1007/s00424-018-2219-8
[173]  Lei, S., Peng, F., Li, M.L., et al. (2020) LncRNA-SMILR Modulates RhoA/ROCK Signaling by Targeting miR-141 to Regulate Vascular Remodeling in Pulmonary Arterial Hypertension. The American Journal of Physiology-Heart and Circulatory Physiology, 319, H377-H391.
https://doi.org/10.1152/ajpheart.00717.2019
[174]  Ballantyne, M.D., Pinel, K., Dakin, R., et al. (2016) Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation. Circulation, 133, 2050-2065.
https://doi.org/10.1161/CIRCULATIONAHA.115.021019
[175]  Mahmoud, A.D., Ballantyne, M.D., Miscianinov, V., et al. (2019) The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circulation Research, 125, 535-551.
https://doi.org/10.1161/CIRCRESAHA.119.314876
[176]  Carpenter, S., Aiello, D., Atianand, M.K., et al. (2013) A Long Noncoding RNA Mediates both Activation and Repression of Immune Response Genes. Science, 341, 789-792.
https://doi.org/10.1126/science.1240925
[177]  Xue, Z., Zhang, Z., Liu, H., et al. (2019) lincRNA-Cox2 Regulates NLRP3 Inflammasome and Autophagy Mediated Neuroinflammation. Cell Death & Differentiation, 26, 130-145.
https://doi.org/10.1038/s41418-018-0105-8
[178]  Cheng, G., He, L. and Zhang, Y. (2020) LincRNA-Cox2 Promotes Pulmonary Arterial Hypertension by Regulating the let-7a-Mediated STAT3 Signaling Pathway. Molecular and Cellular Biochemistry, 475, 239-247.
https://doi.org/10.1007/s11010-020-03877-6
[179]  Leung, A., Trac, C., Jin, W., et al. (2013) Novel Long Noncoding RNAs Are Regulated by Angiotensin II in Vascular Smooth Muscle Cells. Circulation Research, 113, 266-278.
https://doi.org/10.1161/CIRCRESAHA.112.300849
[180]  Nie, X., Chen, Y., Tan, J., et al. (2019) MicroRNA-221-3p Promotes Pulmonary Artery Smooth Muscle Cells Proliferation by Targeting AXIN2 during Pulmonary Arterial Hypertension. Vascular Pharmacology, 116, 24-35.
https://doi.org/10.1016/j.vph.2017.07.002
[181]  Wang, H., Qin, R. and Cheng, Y. (2020) LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222. Shock, 53, 723-729.
https://doi.org/10.1097/SHK.0000000000001410
[182]  Jandl, K., Thekkekara Puthenparampil, H., Marsh, L.M., et al. (2019) Long Non-Coding RNAs Influence the Transcriptome in Pulmonary Arterial Hypertension: The Role of PAXIP1-AS1. The Journal of Pathology, 247, 357-370.
https://doi.org/10.1002/path.5195
[183]  Song, R., Lei, S., Yang, S., et al. (2021) LncRNA PAXIP1-AS1 Fosters the Pathogenesis of Pulmonary Arterial Hypertension via ETS1/WIPF1/RhoA Axis. Journal of Cellular and Molecular Medicine, 25, 7321-7334.
https://doi.org/10.1111/jcmm.16761
[184]  Qin, Y., Zhu, B., Li, L., et al. (2021) Overexpressed lncRNA AC068039.4 Contributes to Proliferation and Cell Cycle Progression of Pulmonary Artery Smooth Muscle Cells via Sponging miR-26a-5p/TRPC6 in Hypoxic Pulmonary Arterial Hypertension. Shock, 55, 244-255.
https://doi.org/10.1097/SHK.0000000000001606
[185]  Wang, L., Han, S., Jin, G., et al. (2014) Linc00963: A Novel, Long Non-Coding RNA Involved in the Transition of Prostate Cancer from Androgen-Dependence to Androgen-Independence. International Journal of Oncology, 44, 2041-2049.
https://doi.org/10.3892/ijo.2014.2363
[186]  Xie, Z., Zhong, C., Shen, J., et al. (2022) LINC00963: A Potential Cancer Diagnostic and Therapeutic Target. Biomedicine & Pharmacotherapy, 150, Article ID: 113019.
https://doi.org/10.1016/j.biopha.2022.113019
[187]  Yang, C., Rong, R., Li, Y., et al. (2022) Decrease in LINC00963 Attenuates the Progression of Pulmonary Arterial Hypertension via microRNA-328-3p/Profilin 1 Axis. Journal of Clinical Laboratory Analysis, 36, e24383.
https://doi.org/10.1002/jcla.24383
[188]  Huppi, K., Volfovsky, N., Runfola, T., et al. (2008) The Identification of microRNAs in a Genomically Unstable Region of Human Chromosome 8q24. Molecular Cancer Research, 6, 212-221.
https://doi.org/10.1158/1541-7786.MCR-07-0105
[189]  Jin, K., Wang, S., Zhang, Y., et al. (2019) Long Non-Coding RNA PVT1 Interacts with MYC and Its Downstream Molecules to Synergistically Promote Tumorigenesis. Cellular and Molecular Life Sciences, 76, 4275-4289.
https://doi.org/10.1007/s00018-019-03222-1
[190]  Xia, X., Huang, L., Zhou, S., et al. (2023) Hypoxia-Induced Long Non-Coding RNA Plasmacytoma Variant Translocation 1 Upregulation Aggravates Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating Autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf Signaling Pathways. International Journal of Cardiology, 370, 368-377.
https://doi.org/10.1016/j.ijcard.2022.09.060
[191]  Yu, X., Li, Z., Zheng, H., et al. (2017) NEAT1: A Novel Cancer-Related Long Non-Coding RNA. Cell Proliferation, 50, e12329.
https://doi.org/10.1111/cpr.12329
[192]  Dou, X., Ma, Y., Qin, Y., et al. (2021) NEAT1 Silencing Alleviates Pulmonary Arterial Smooth Muscle Cell Migration and Proliferation under Hypoxia through Regulation of miR?34a?5p/KLF4 in Vitro. Molecular Medicine Reports, 24, Article No. 749.
https://doi.org/10.3892/mmr.2021.12389
[193]  Wu, Z.H., Zhou, J., Hu, G.H., et al. (2021) LncRNA CASC2 Inhibits Lung Adenocarcinoma Progression through Forming Feedback Loop with miR-21/p53 Axis. The Kaohsiung Journal of Medical Sciences, 37, 675-685.
https://doi.org/10.1002/kjm2.12386
[194]  Gong, J., Chen, Z., Chen, Y., et al. (2019) Long Non-Coding RNA CASC2 Suppresses Pulmonary Artery Smooth Muscle Cell Proliferation and Phenotypic Switch in Hypoxia-Induced Pulmonary Hypertension. Respiratory Research, 20, Article No. 53.
https://doi.org/10.1186/s12931-019-1018-x
[195]  Han, Y., Liu, Y., Yang, C., et al. (2020) LncRNA CASC2 Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Regulating the miR-222/ING5 Axis. Cell & Molecular Bio Letters, 25, Article No. 21.
https://doi.org/10.1186/s11658-020-00215-y
[196]  Liu, Y., Hu, R., Zhu, J., et al. (2021) The lncRNA PAHRF Functions as a Competing Endogenous RNA to Regulate MST1 Expression by Sponging miR-23a-3p in Pulmonary Arterial Hypertension. Vascular Pharmacology, 139, Article ID: 106886.
https://doi.org/10.1016/j.vph.2021.106886
[197]  Kino, T., Hurt, D.E., Ichijo, T., Nader, N. and Chrousos, G.P. (2010) Noncoding RNA gas5 Is a Growth Arrest and Starvation-Associated Repressor of the Glucocorticoid Receptor. Science Signaling, 3, ra8.
https://doi.org/10.1126/scisignal.2000568
[198]  Gao, Z.Q., Wang, J.F., Chen, D.H., et al. (2017) Long Non-Coding RNA GAS5 Suppresses Pancreatic Cancer Metastasis through Modulating miR-32-5p/PTEN Axis. Cell & Bioscience, 7, Article No. 66.
https://doi.org/10.1186/s13578-017-0192-0
[199]  Li, Y., Gu, J. and Lu, H. (2017) The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells through the PTEN/Akt/mTOR Pathway. Digestive Diseases and Sciences, 62, 3426-3437.
https://doi.org/10.1007/s10620-017-4831-4
[200]  Tang, R., Zhang, G., Wang, Y.C., et al. (2017) The Long Non-Coding RNA GAS5 Regulates Transforming Growth Factor β (TGF-β)-Induced Smooth Muscle Cell Differentiation via RNA Smad-Binding Elements. Journal of Biological Chemistry, 292, 14270-14278.
https://doi.org/10.1074/jbc.M117.790030
[201]  Hao, X., Li, H., Zhang, P., et al. (2020) Down-Regulation of lncRNA Gas5 Promotes Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating KCNK3 Expression. European Journal of Pharmacology, 889, Article ID: 173618.
https://doi.org/10.1016/j.ejphar.2020.173618
[202]  Feng, X., Wang, K., Yang, T., et al. (2022) LncRNA-GAS5/miR-382-3p Axis Inhibits Pulmonary Artery Remodeling and Promotes Autophagy in Chronic Thromboembolic Pulmonary Hypertension. Genes Genomics, 44, 395-404.
https://doi.org/10.1007/s13258-021-01202-z
[203]  Liu, Y., Zhang, H., Li, Y., et al. (2020) Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells. Hypertension, 76, 1124-1133.
https://doi.org/10.1161/HYPERTENSIONAHA.120.14644
[204]  Li, Y., Zhang, J., Sun, H., et al. (2021) lnc-Rps4l-Encoded Peptide RPS4XL Regulates RPS6 Phosphorylation and Inhibits the Proliferation of PASMCs Caused by Hypoxia. Molecular Therapy, 29, 1411-1424.
https://doi.org/10.1016/j.ymthe.2021.01.005
[205]  Li, Y., Zhang, J., Sun, H., et al. (2022) RPS4XL Encoded by lnc-Rps4l Inhibits Hypoxia-Induced Pyroptosis by Binding HSC70 Glycosylation Site. Molecular Therapy Nucleic Acids, 28, 920-934.
https://doi.org/10.1016/j.omtn.2022.05.033
[206]  Liu, Y., Sun, Z., Zhu, J., et al. (2018) LncRNA-TCONS_00034812 in Cell Proliferation and Apoptosis of Pulmonary Artery Smooth Muscle Cells and Its Mechanism. Journal of Cellular Physiology, 233, 4801-4814.
https://doi.org/10.1002/jcp.26279
[207]  Lin, D., Zhang, X., Zhang, C., et al. (2021) LncRNA-TCONS_00034812 Is Upregulated in Atherosclerosis and Upregulates miR-21 through Methylation in Vascular Smooth Muscle Cells. Annals of Translational Medicine, 9, 1005.
https://doi.org/10.21037/atm-21-2632
[208]  Pasmant, E., Laurendeau, I., Héron, D., et al. (2007) Characterization of a Germ-Line Deletion, Including the Entire INK4/ARF Locus, in a Melanoma-Neural System Tumor Family: Identification of ANRIL, an Antisense Noncoding RNA Whose Expression Coclusters with ARF. Cancer Research, 67, 3963-3969.
https://doi.org/10.1158/0008-5472.CAN-06-2004
[209]  Chen, L., Qu, H., Guo, M., et al. (2020) ANRIL and Atherosclerosis. Journal of Clinical Pharmacy and Therapeutics, 45, 240-248.
https://doi.org/10.1111/jcpt.13060
[210]  Wang, S., Zhang, C. and Zhang, X. (2020) Downregulation of Long Non?Coding RNA ANRIL Promotes Proliferation and Migration in Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Molecular Medicine Reports, 21, 589-596.
https://doi.org/10.3892/mmr.2019.10887
[211]  Deng, L., Chen, J., Chen, B., et al. (2022) LncPTSR Triggers Vascular Remodeling in Pulmonary Hypertension by Regulating [Ca2+]i in Pulmonary Arterial Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 66, 524-538.
https://doi.org/10.1165/rcmb.2020-0480OC
[212]  Wu, G., Cai, J., Han, Y., et al. (2014) LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity. Circulation, 130, 1452-1465.
https://doi.org/10.1161/CIRCULATIONAHA.114.011675
[213]  Wang, H., He, F., Liang, B., et al. (2021) p53-Dependent LincRNA-p21 Protects against Proliferation and Anti-Apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. Journal of Cardiovascular Translational Research, 14, 426-440.
https://doi.org/10.1007/s12265-020-10074-9
[214]  Leisegang, M.S., Fork, C., Josipovic, I., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79.
https://doi.org/10.1161/CIRCULATIONAHA.116.026991
[215]  Wu, Q., Zhou, X., Wang, Y., et al. (2022) LncRNA GAS5 Promotes Spermidine-Induced Autophagy through the miRNA-31-5p/NAT8L Axis in Pulmonary Artery Endothelial Cells of Patients with CTEPH. Molecular Medicine Reports, 26, Article No. 297.
https://doi.org/10.3892/mmr.2022.12813
[216]  Gofrit, O.N., Benjamin, S., Halachmi, S., et al. (2014) DNA Based Therapy with Diphtheria Toxin-A BC-819: A Phase 2b Marker Lesion Trial in Patients with Intermediate Risk Nonmuscle Invasive Bladder Cancer. Journal of Urology, 191, 1697-1702.
https://doi.org/10.1016/j.juro.2013.12.011
[217]  Smaldone, M.C. and Davies, B.J. (2010) BC-819, a Plasmid Comprising the H19 Gene Regulatory Sequences and Diphtheria Toxin A, for the Potential Targeted Therapy of Cancers. Current Opinion in Molecular Therapeutics, 12, 607-616.
[218]  Gomes, C.P.C., Spencer, H., Ford, K.L., et al. (2017) The Function and Therapeutic Potential of Long Non-Coding RNAs in Cardiovascular Development and Disease. Molecular Therapy Nucleic Acids, 8, 494-507.
https://doi.org/10.1016/j.omtn.2017.07.014

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413