全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Powering a Low Power Wireless Sensor in a Harsh Industrial Environment: Energy Recovery with a Thermoelectric Generator and Storage on Supercapacitors

DOI: 10.4236/epe.2023.1511022, PP. 372-398

Keywords: Energy Recovery, Battery-Free System, Supercapacitor, Thermoelectric Generator, TEG, BQ25504, Energy Management, Thermal Gradient

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).

References

[1]  (2018) Programme d’investissements d’avenir, Grands défis du numérique.
https://www.entreprises.gouv.fr/files/files/directions_services/numerique/appels-a-projets/dp-defis-numerique-5vagues.pdf
[2]  Omer, A., Khairi, I., Chia Ai, O. and Kamran Liaquat, B. (2022) Battery Characterization for Wireless Sensor Network Applications to Investigate the Effect of Load on Surface Temperatures. Royal Society Open Science, 9, Article 210870.
https://doi.org/10.1098/rsos.210870
[3]  Hidalgo-Leon, R., Urquizo, J., Silva, C.E., Silva-Leon, J., Wu, J., Singh, P. and Soriano, G. (2022) Powering Nodes of Wireless Sensor Networks with Energy Harvesters for Intelligent Buildings: A Review. Energy Reports, 8, 3809-3826.
https://doi.org/10.1016/j.egyr.2022.02.280
[4]  Boitier, V., Estibals, B., Huet, F. and Seguier, L. (2023) Battery-Free Power Supply for Wireless Sensor Combining Photovoltaic Cells and Supercapacitors. Energy and Power Engineering, 15, 151-179.
https://doi.org/10.4236/epe.2023.153007
[5]  Champier, D. (2017) Thermoélectric Generators: A Review of Applications. Energy Conversion and Management, 140, 167-181.
https://doi.org/10.1016/j.enconman.2017.02.070
[6]  Jaziri, N., Gutzeit, N., Bartsch, H., Boughamoura, A., Müllera, J. and Tounsi, F. (2022) LTCC-Based Y-Type Thermoelectric Generator with an Improved Heat Flow Guide for Automotive Waste Heat Recovery. Sustainable Energy Fuels, 6, 2330-2342.
https://doi.org/10.1039/D2SE00048B
[7]  Fan, W., An, Z., Liu, F., Gao, Z., Zhang, M., Fu, C., Zhu, T., Liu, Q. and Zhao, X. (2023) High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics. Advanced Science, 10, Article ID: 2206397.
https://doi.org/10.1002/advs.202206397
[8]  álvarez-Carulla, A., Saiz-Vela, A., Puig-Vidal, M., et al. (2023) High-Efficient Energy Harvesting Architecture for Self-Powered Thermal-Monitoring Wireless Sensor Node Based on a Single Thermoelectric Generator. Scientific Reports, 13, Article No. 1637.
https://doi.org/10.1038/s41598-023-28378-6
[9]  Zhu, S., Miao, L., Peng, Y., Gao, J., Lai, H., Liu, C., Zhang, Y., Zhang, X., Chen, Z. and Pei, Y. (2023) Persistently Self-Powered Wearable Thermoelectric Generator Enabled by Phase-Change Inorganics as the Heat Sink. Materials Today Physics, 32, Article ID: 101011.
https://doi.org/10.1016/j.mtphys.2023.101011
[10]  Liu, Z., Cheng, K., Wang, Z., Wang, Y., Ha, C. and Qin, J. (2023) Performance Analysis of the Heat Pipe-Based Thermoelectric Generator (HP-TEG) Energy System Using in-situ Resource for Heat Storage Applied to the Early-Period Lunar Base. Applied Thermal Engineering, 218, Article ID: 119303.
https://doi.org/10.1016/j.applthermaleng.2022.119303
[11]  Jaziri, N., Boughamoura, A., Müller, J., et al. (2019) A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Reports, 6, 264-287.
https://doi.org/10.1016/j.egyr.2019.12.011
[12]  Shen, Z.G., Tian, L.L. and Liu, X. (2019) Automotive Exhaust Thermoelectric Generators: Current Status, Challenges and Future Prospects. Energy Conversion and Management, 195, 1138-1173.
https://doi.org/10.1016/j.enconman.2019.05.087
[13]  Zoui, M.A., Bentouba, S., Stocholm, J.G. and Bourouis, M. (2020) A Review on Thermoelectric Generators: Progress and Applications. Energies, 13, Article 3606.
https://doi.org/10.3390/en13143606
[14]  Park, H. and Lee, D. (2019) Energy Harvesting Using Thermoelectricity for IoT (Internet of Things) and E-Skin Sensors. Journal of Physics: Energy, 1, Article ID: 042001.
https://doi.org/10.1088/2515-7655/ab2f1e
[15]  (2023) Wireless Industry Sensors Free from Battery Dependency.
https://dcosystems.co.uk/wireless-industry-sensors/
[16]  (2023) Autonomous Sensors for the Industry.
https://moizeh.com/
[17]  (2023) Biolite.
https://www.bioliteenergy.com/collections/portable-stoves
[18]  (2023) TEG10W Stove Top TEG Generator.
https://thermoelectric-generator.com/product/teg10w-stove-top-teg-generator/
[19]  Mathis, S., Gruber, J.M., Ebi, C., Bloem, S., Rieckermann, J. and Blumensaat, F. (2022) Energy Self-Sufficient Systems for Monitoring Sewer Networks. Sensors and Measuring Systems; 21th ITG/GMA-Symposium, Nuremberg, 10-11 May 2022, 1-8.
[20]  Lee, W.K., Schubert, M.J.W., Ooi, B.Y. and Ho, S.J.Q. (2018) Multi-Source Energy Harvesting and Storage for Floating Wireless Sensor Network Nodes with Long Range Communication Capability. IEEE Transactions on Industry Applications, 54, 2606-2615.
https://doi.org/10.1109/TIA.2018.2799158
[21]  Paterova, T., Prauzek, M., Konecny, J., Ozana, S., Zmij, P., Stankus, M., Weise, D. and Pierer, A. (2021) Environment-Monitoring IoT Devices Powered by a TEG Which Converts Thermal Flux between Air and Near-Surface Soil into Electrical Energy. Sensors, 21, Article 8098.
https://doi.org/10.3390/s21238098
[22]  Nakagawa, K. and Suzuki, T. (2016) A High-Efficiency Thermoelectric Module with Phase Change Material for IoT Power Supply. Procedia Engineering, 168, 1630-1633.
https://doi.org/10.1016/j.proeng.2016.11.477
[23]  Kim Tuoi, T.T., Van Toan, N. and Ono, T. (2021) Heat Storage Thermoelectric Generator for Wireless IOT Sensing Systems. 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, 20-24 June 2021, 924-927.
https://doi.org/10.1109/Transducers50396.2021.9495686
[24]  Mehne, P., Lickert, F., Baumker, E., Kroener, M. and Woias, P. (2016) Energy-Autonomous Wireless Sensor Nodes for Automotive Applications, Powered by Thermoelectric Energy Harvesting. Journal of Physics: Conference Series, 773, Article ID: 012041.
https://doi.org/10.1088/1742-6596/773/1/012041
[25]  Usón, S., Royo, J. and Canalís, P. (2023) Integration of Thermoelectric Generators in a Biomass Boiler: Experimental Tests and Study of Ash Deposition Effect. Renewable Energy, 214, 395-406.
https://doi.org/10.1016/j.renene.2023.05.100
[26]  Najjar, Y.S.H. and Kseibi, M. (2017) Evaluation of Experimental JUST Thermoelectric Stove for Electricity—Deprived Regions. Renewable and Sustainable Energy Reviews, 69, 854-861.
https://doi.org/10.1016/j.rser.2016.07.041
[27]  Jouhara, H., Zabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L. and Dai, S. (2021) Thermoelectric Generator (TEG) Technologies and Applications. International Journal of Thermofluids, 9, Article ID: 100063.
https://doi.org/10.1016/j.ijft.2021.100063
[28]  Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F. and Ismail, M. (2020) A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Reports, 6, 264-287.
https://doi.org/10.1016/j.egyr.2019.12.011
[29]  Fernández-Yánez, P., Gómez, A., García-Contreras, R. and Armas, O. (2018) Evaluating Thermoelectric Modules in Diesel Exhaust Systems: Potential under Urban and Extra-Urban Driving Conditions. Journal of Cleaner Production, 182, 1070-1079.
https://doi.org/10.1016/j.jclepro.2018.02.006
[30]  Apertet, Y., Ouerdane, H., Goupil, C. and Lecaeur, P. (2012) Internal Convection in Thermoelectric Generator Models. Journal of Physics: Conference Series, 395, Article ID: 012103.
https://doi.org/10.1088/1742-6596/395/1/012103
[31]  EURECA (2023) Thermoelectric Generators.
https://www.eureca.de/files/pdf/cooling/teg/TEGenerators.pdf
[32]  Freunek, M., Müller, M., Ungan, T., Walker, W. and Reindl, L.M. (2009) New Physical Model for Thermoelectric Generators. Journal of Electronic Materials, 38, 1214-1220.
https://doi.org/10.1007/s11664-009-0665-y
[33]  Durand-Estebe, P. (2016) En-ergy Recovery Systems for the Supply of Autonomous Sensors for Aeronautics. Master’s Thesis, INSA Toulouse, Toulouse.
https://www.theses.fr/2016ISAT0033
[34]  (2023) Thermogenerator.
https://shop.eureca.de/thermoelectric/seebeck-elements/413/teg1-30-30-8.5/200
[35]  Wang, C.C., Hung, C.I. and Chen, W.H. (2012) Design of Heat Sink for Improving the Performance of Thermoelectric Generator Using Two-Stage Optimization. Energy, 39, 236-245.
https://doi.org/10.1016/j.energy.2012.01.025
[36]  (2023) Cooling Element.
https://coolinnovations.com/datasheets/3-2020XXM.pdf
[37]  (2023) Magnet.
https://www.kipp.fr/xs_db/DOKUMENT_DB/www/KIPP_DE_CH_PL/BEDIENTEILE/DataSheet/fr/K05/K0550_Datasheet_12598_Aimant_plat_en_SmCo--fr.pdf
[38]  Nour Eddine, A. (2017) Modeling and Optimization of Waste Heat Recovery System Using the Thermoelectricity (Seebeck Effect) for Marine Application. Master’s Thesis, Ecole centrale de Nantes, Nantes.
https://www.theses.fr/2017ECDN0029
[39]  Texas Instruments (2022) Ultra Low Power Boost Converter with Battery Management for Energy Harvester.
https://www.ti.com/product/BQ25504?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=BQ25504&ds_k=BQ25504&DCM=yes&gclid=EAIaIQobChMIkICNx_zf_QIVRgsGAB2qugLoEAAYASAAEgKCXvD_BwE&gclsrc=aw.ds
[40]  Texas Instruments (2020) Ultra Low Power Harvester Power Management IC with Boost Charger, and Nanopower Buck Converter.
https://www.ti.com/product/BQ25570?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=BQ25570&ds_k=BQ25570&DCM=yes&gclid=EAIaIQobChMI7Nut_vzf_QIVwrHtCh09SA91EAAYAyAAEgLi_vD_BwE&gclsrc=aw.ds
[41]  (2020) Ultra Low Power Energy Harvester and Battery Charger with Embedded MPPT and LDOs.
https://www.st.com/en/power-management/spv1050.html
[42]  (2020) Energy-Harvesting Charger and Protector.
https://www.analog.com/media/en/technical-documentation/data-sheets/max17710.pdf
[43]  Analog Devices, Inc. (2021) Ultralow Power Boost Regulator with MPPT and Charge Management.
https://www.analog.com/en/products/adp5090.html
[44]  Singha Roy, P.K., Karayaka, H.B., He, J. and Yu, Y.H. (2021) Economic Comparison between Battery and Supercapacitor for Hourly Dispatching Wave Energy Converter Power. 2020 52nd North American Power Symposium (NAPS), Tempe, 11-13 April 2021, 1-6.
https://doi.org/10.1109/NAPS50074.2021.9449677
[45]  (2023) Supercapacitor Cell.
https://www.farnell.com/datasheets/2849565.pdf
[46]  Texas Instruments (2022) Synchronous Boost Converter with Ultra-Low Quiescent Current.
https://www.ti.com/lit/ds/symlink/tps61099.pdf?ts=1678888228897&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS61099%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-wwe%2526utm_content%253Dtps61099%2526ds_k%253DTPS61099%2526dcm%253Dyes%2526gclid%253DCj0KCQjw2cWgBhDYARIsALggUhpadNWfPR-GLOfKRocS7hgMDSmy1QO_MBgkYAX4WdD2Z_L1yF3jbf2QaAgloEALw_wcB%2526gclsrc%253Daw.ds
[47]  Texas Instruments (2023) Current Low-Dropout Linear Regulators in SC70 Package.
https://www.ti.com/lit/ds/symlink/tps715-q1.pdf?ts=1679390231564&ref_url=https%253A%252F%252Fwww.google.com%252F
[48]  (2023) DC Power Analyzer.
https://www.keysight.com/us/en/product/N6705B/dc-power-analyzer-modular-600-w-4-slots.html
[49]  Boitier, V., Tajan, P. and Dilhac, J.M. (2016) WSN Nodes: Design Considerations and Energy Management. Journal of Physics: Conference Series, 773, Article ID: 012043. http://toc.proceedings.com/33294webtoc.pdf
https://doi.org/10.1088/1742-6596/773/1/012043

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133