全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自噬–溶酶体系统靶向降解蛋白质技术研究进展
Research Progress in Targeted Protein Degradation Technology of Autophagy-Lysosome System

DOI: 10.12677/HJMCe.2023.114031, PP. 262-272

Keywords: 溶酶体,自噬,靶向降解,蛋白质
Lysosome
, Autophagy, Targeted Degradation, Proteins

Full-Text   Cite this paper   Add to My Lib

Abstract:

在靶向蛋白降解(TPD)药物开发领域,利用泛素–蛋白酶体系统的蛋白质水解靶向嵌合体(PROTACs)得到了广泛的研究。然而,泛素–蛋白酶体系统仅限于降解可溶性蛋白和膜蛋白的降解,不包括聚集蛋白/细胞外蛋白和功能失调的细胞器。溶酶体作为一种替代的蛋白质降解途径,既可通过自噬–溶酶体途径,降解细胞内靶点:如可溶性蛋白和聚集蛋白;又能通过核内体–溶酶体途径,降解细胞外靶点:如膜蛋白和分泌的细胞外蛋白。本文中,我们重点介绍新兴的溶酶体介导的靶向降解技术,如AUTAC、ATTEC、AUTOTAC、LYTAC和MoDE-A。
In the field of Targeted Protein Degradation (TPD) drug development, Protein Targeting Chimeras (PROTACs) utilizing the ubiquitin-proteasome system have been extensively studied. However, the ubiquitin-proteasome system is limited to the degradation of soluble and membrane proteins and does not include aggregated proteins/extracellular proteins and dysfunctional organelles. Lysosomes, as an alternative protein degradation pathway, can degrade intracellular targets through the autophagy-lysosome pathway, such as soluble proteins and aggregated proteins, and can also degrade extracellular targets through the endolysosome-lysosome pathway, such as membrane proteins and secreted extracellular proteins. In this article, we focus on emerging lysosome-mediated targeted degradation techniques, such as AUTAC, ATTEC, AUTOTAC, LYTAC, and MoDE-A.

References

[1]  Ciechanover, A. (2005) Intracellular Protein Degradation: From a Vague Idea, through the Lysosome and the Ubiqui-tin-Proteasome System, and onto Human Diseases and Drug Targeting (Nobel Lecture). Angewandte Chemie Interna-tional Edition, 44, 5944-5967.
https://doi.org/10.1002/anie.200501428
[2]  Dikic, I. (2017) Proteasomal and Au-tophagic Degradation Systems. Annual Review of Biochemistry, 86, 193-224.
https://doi.org/10.1146/annurev-biochem-061516-044908
[3]  Rousseau, A. and Bertolotti, A. (2018) Regulation of Proteasome Assembly and Activity in Health and Disease. Nature Reviews Molecular Cell Biology, 19, 697-712.
https://doi.org/10.1038/s41580-018-0040-z
[4]  Varshavsky, A. (2005) Regulated Protein Degradation. Trends in Biochemical Sciences, 30, 283-286.
https://doi.org/10.1016/j.tibs.2005.04.005
[5]  Lilienbaum, A. (2013) Relationship between the Proteasomal Sys-tem and Autophagy. International Journal of Biochemistry and Molecular Biology, 4, 1-26.
[6]  Wang, F., Gómez-Sintes, R. and Boya, P. (2018) Lysosomal Membrane Permeabilization and Cell Death. Traffic, 19, 918-931.
https://doi.org/10.1111/tra.12613
[7]  Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Pro-teins in Cancer. Molecular Cancer, 19, Article No. 12.
https://doi.org/10.1186/s12943-020-1138-4
[8]  Mizushima, N., Levine, B., Cuervo, A.M. and Klionsky, D.J. (2008) Autophagy Fights Disease through Cellular Self-Digestion. Nature, 451, 1069-1075.
https://doi.org/10.1038/nature06639
[9]  Kaushik, S. and Cuervo, A.M. (2012) Chaper-one-Mediated Autophagy: A Unique Way to Enter the Lysosome World. Trends in Cell Biology, 22, 407-417.
https://doi.org/10.1016/j.tcb.2012.05.006
[10]  Mizushima, N. and Yoshimori, T. (2007) How to Interpret LC3 Immunoblotting. Autophagy, 3, 542-545.
https://doi.org/10.4161/auto.4600
[11]  Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: Molecular Machinery for Self-Eating. Cell Death & Differentiation, 12, 1542-1552.
https://doi.org/10.1038/sj.cdd.4401765
[12]  Kroemer, G., Marin?o, G. and Levine, B. (2010) Autophagy and the In-tegrated Stress Response. Molecular Cell, 40, 280-293.
https://doi.org/10.1016/j.molcel.2010.09.023
[13]  Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A. and Guan, K.L. (2013) ULK1 Induces Autophagy by Phosphorylating Beclin-1 and Activating VPS34 Lipid Kinase. Nature Cell Biology, 15, 741-750.
https://doi.org/10.1038/ncb2757
[14]  Tanida, I., Ueno, T. and Kominami, E. (2004) LC3 Conjugation System in Mammalian Autophagy. The International Journal of Biochemistry & Cell Biology, 36, 2503-2518.
https://doi.org/10.1016/j.biocel.2004.05.009
[15]  Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H. and Mizushima, N. (2016) The ATG Conjugation Systems Are Important for Degradation of the Inner Autophagosomal Membrane. Science, 354, 1036-1041.
https://doi.org/10.1126/science.aaf6136
[16]  Faruk, M.O., Ichimura, Y. and Komatsu, M. (2021) Selective Au-tophagy. Cancer Science, 112, 3972-3978.
https://doi.org/10.1111/cas.15112
[17]  Zaffagnini, G. and Martens, S. (2016) Mechanisms of Selective Autophagy. Journal of Molecular Biology, 428, 1714-1724.
https://doi.org/10.1016/j.jmb.2016.02.004
[18]  Lamark, T. and Johansen, T. (2012) Aggrephagy: Selective Dispos-al of Protein Aggregates by Macroautophagy. International Journal of Cell Biology, 2012, Article ID: 736905.
https://doi.org/10.1155/2012/736905
[19]  Lemasters, J.J. (2005) Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Research, 8, 3-5.
https://doi.org/10.1089/rej.2005.8.3
[20]  Bauckman, K.A., Owusu-Boaitey, N. and Mysorekar, I.U. (2015) Selec-tive Autophagy: Xenophagy. Methods, 75, 120-127.
https://doi.org/10.1016/j.ymeth.2014.12.005
[21]  Wyant, G.A., Abu-Remaileh, M., Frenkel, E.M., Laqtom, N.N., Dharamdasani, V., Lewis, C.A., Chan, S.H., Heinze, I., Ori, A. and Sabatini, D.M. (2018) NUFIP1 Is a Ribosome Re-ceptor for Starvation-Induced Ribophagy. Science, 360, 751-758.
https://doi.org/10.1126/science.aar2663
[22]  Cebollero, E., Reggiori, F. and Kraft, C. (2012) Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories. International Journal of Cell Biology, 2012, Article ID: 182834.
https://doi.org/10.1155/2012/182834
[23]  Wilson, C.J., Myer, V.E., Porter, J.A., Bussiere, D.E., Finan, P.M., La-bow, M.A., Mao, X., Hamann, L.G., Manning, B.D., Valdez, R.A., Nicholson, T., Schirle, M., Knapp, M.S., Keaney, E.P. and Murphy, L.O. (2014) Selective VPS34 Inhibitor Blocks Autophagy and Uncovers a Role for NCOA4 in Ferri-tin Degradation and Iron Homeostasis in Vivo. Nature Cell Biology, 16, 1069-1079.
https://doi.org/10.1038/ncb3053
[24]  Johansen, T. and Lamark, T. (2020) Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal of Molecular Biology, 432, 80-103.
https://doi.org/10.1016/j.jmb.2019.07.016
[25]  Ma, X., Lu, C., Chen, Y., Li, S., Ma, N. and Tao, X. (2022) CCT2 Is an Aggrephagy Receptor for Clearance of Solid Protein Aggregates. Cell, 185, 1325-1345.E22.
https://doi.org/10.1016/j.cell.2022.03.005
[26]  Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109.
https://doi.org/10.1038/nature13148
[27]  Kumsta, C., Chang, J.T., Lee, R., Tan, E.P., Yang, Y., Loureiro, R., Choy, E.H., Lim, S.H.Y., Saez, I., Springhorn, A., Hoppe, T., Vilchez, D. and Hansen, M. (2019) The Autophagy Receptor P62/SQST-1 Pr

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413