全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Carbon Dioxide Sequestration Methodothologies—A Review

DOI: 10.4236/ajcc.2023.124026, PP. 579-627

Keywords: Aquifer, Carbon Subsurface Storage (CSS), CO2 Sequestration, Environment, Geological Storage, Carbon Capture and Storage (CCS)

Full-Text   Cite this paper   Add to My Lib

Abstract:

The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO2 emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO2 on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO2 storage. This stage involves primarily the adsorption of CO2 in the ocean and the injection of CO2 into subsurface reservoir formations. Additionally, the process of CO2 reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO2 into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO2 injection and storage systems, with a specific focus on CO2 storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated

References

[1]  Adams, R. A., & Hayes, M. A. (2008). Water Availability and Successful Lactation by Bats as Related to Climate Change in Arid Regions of Western North America. Journal of Animal Ecology, 77, 1115-1121.
https://doi.org/10.1111/j.1365-2656.2008.01447.x
[2]  Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoisé, E., & Gibert, B. (2009). Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine through Peridotites. Environmental Science & Technology, 43, 1226-1231.
https://doi.org/10.1021/es8018429
[3]  Anthonsen, K. L., Aagaard, P., Bergmo, P. E. S., Gislason, S. R., Lothe, A. E., Mortensen, G. M., & Snæbjörnsdóttir, S. (2014). Characterisation and Selection of the Most Prospective CO2 Storage Sites in the Nordic Region. Energy Procedia, 63, 4884-4896.
https://doi.org/10.1016/j.egypro.2014.11.519
[4]  Armitage, P. J., Worden, R. H., Faulkner, D. R., Aplin, A. C., Butcher, A. R., & Espie, A. A. (2013). Mercia Mudstone Formation Caprock to Carbon Capture and Storage Sites: Petrology and Petrophysical Characteristics. Journal of the Geological Society of London, 170, 119-132.
https://doi.org/10.1144/jgs2012-049
[5]  Assima, G. P., Larachi, F., Molson, J., & Beaudoin, G. (2014). Impact of Temperature and Oxygen Availability on the Dynamics of Ambient CO2 Mineral Sequestration by Nickel Mining Residues. Chemical Engineering Journal, 240, 394-403.
https://doi.org/10.1016/j.cej.2013.12.010
[6]  Bachu, S. (2003). Screening and Ranking of Sedimentary Basins for Sequestration of CO2 in Geological Media in Response to Climate Change. Environmental Geology, 44, 277-289.
https://doi.org/10.1007/s00254-003-0762-9
[7]  Bachu, S. (2010). Screening and Selection Criteria, and Characterisation Techniques for the Geological Sequestration of Carbon Dioxide (CO2). In M. M. Maroto-Valer (Ed.), Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (pp. 27-56). Woodhead Publishing.
https://doi.org/10.1533/9781845699581.1.27
[8]  Bachu, S. (2015). Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 40, 188-202.
https://doi.org/10.1016/j.ijggc.2015.01.007
[9]  Bachu, S., & Rothenburg, L. (1998). Carbon Dioxide Sequestration in Salt Caverns: Capacity and Long Term Fate. Journal of Canadian Petroleum Technology.
[10]  Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 Storage Capacity Estimation: Methodology and Gaps. International Journal of Greenhouse Gas Control, 1, 430-443.
https://doi.org/10.1016/S1750-5836(07)00086-2
[11]  Bachu, S., Brulotte, M., Grobe, M. et al. (2000). Suitability of the Alberta Subsurface for Carbon Dioxide Sequestration in Geological Media.
[12]  Bai, X., van der Leeuw, S., O’Brien, K., Berkhout, F., Biermann, F., Brondizio, E. S., Cudennec, C., Dearing, J., Duraiappah, A., Glaser, M., Revkin, A., Steffen, W., & Syvitski, J. (2015). Plausible and Desirable Futures in the Anthropocene: A New Research Agenda. Global Environmental Change, 39, 351-362.
https://doi.org/10.1016/j.gloenvcha.2015.09.017
[13]  BGS (2017). Man-Made (Anthropogenic) Greenhouse Gases.
https://www.bgs.ac.uk/discovering-geology/climate-change/CCS/Anthropogenic.html
[14]  Bobicki, E. R., Liu, Q., Xu, Z., & Zeng, H. (2012). Carbon Capture and Storage Using Alkaline Industrial Wastes. Progress in Energy and Combustion Science, 38, 302-320.
https://doi.org/10.1016/j.pecs.2011.11.002
[15]  Bruni, J., Canepa, M., Chiodini, G., Cioni, R., Cipolli, F., Longinelli, A. et al. (2002). Irreversible Water-Rock Mass Transfer Accompanying the Generation of the Neutral, Mg-HCO3 and High-pH, Ca-OH Spring Waters of the Genova Province, Italy. Applied Geochemistry, 17, 455-474.
https://doi.org/10.1016/S0883-2927(01)00113-5
[16]  Burnol, A., Thinon, I., Ruffine, L., & Herri, J. M. (2015). Influence of Impurities (Nitrogen and Methane) on the CO2 Storage capacity As Sediment-Hosted Gas Hydrates—Application in the Area of the Celtic Sea and the Bay of Biscay. International Journal of Greenhouse Gas Control, 35, 96-109.
https://doi.org/10.1016/j.ijggc.2015.01.018
[17]  Buttinelli, M., Procesi, M., Cantucci, B., Quattrocchi, F., & Boschi, E. (2011). The Geo-Database of Caprock Quality and Deep Saline Aquifers Distribution for Geological Storage of CO2 in Italy. Energy, 36, 2968-2983.
https://doi.org/10.1016/j.energy.2011.02.041
[18]  Calabrò, A., Deiana, P., Fiorini, P., Girardi, G., & Stendardo, S. (2008). Possible Optimal Configurations for the ZECOMIX High Efficiency Zero Emission Hydrogen and Power Plant. Energy, 33, 952-962.
https://doi.org/10.1016/j.energy.2008.01.004
[19]  Cantucci, B., Montegrossi, G., Vaselli, O., Tassi, F., Quattrocchi, F., & Perkins, E. H. (2009). Geochemical Modeling of CO2 Storage in Deep Reservoirs: The Weyburn Project (Canada) Case Study. Chemical Geology, 265, 181-197.
https://doi.org/10.1016/j.chemgeo.2008.12.029
[20]  Cipolli, F., Gambardella, B., Marini, L., Ottonello, G., & Zuccolini, M. V. (2004). Geo-Chemistry of High-pH Waters from Serpentinites of the Gruppo di Voltri (Genova, Italy) and Reaction Path Modeling of CO2 Sequestration in Serpentinite Aquifers. Applied Geochemistry, 19, 787-802.
https://doi.org/10.1016/j.apgeochem.2003.10.007
[21]  Circone, S., Stern, L. A., Kirby, S. H., Durham, W. B., Chakoumakos, B. C., Rawn, C. J. et al. (2003). CO2 Hydrate: Synthesis, Composition, Structure, Dissociation Behavior, and a Comparison to Structure I CH4 Hydrate. The Journal of Physical Chemistry B, 107, 5529-5539.
https://doi.org/10.1021/jp027391j
[22]  CO2CRC (2015). CO2 Dispersion. Cooperative Research Centre for Greenhouse Gas Technologies.
[23]  DECC (2012). CCS Roadmap—Supporting deployment of Carbon Capture and Storage in the UK.
[24]  DePaolo, D. J., Cole, D. R., Navrotsky, A., & Bourg, I. C. (2013). Geochemistry of Geologic CO2 Sequestration. De Gruyter.
https://doi.org/10.1515/9781501508073
[25]  ECF (2010). Roadmap 2050: A Practical Guide to a Prosperous, Low-Carbon Europe.
[26]  Ekpo Johnson, E., Scherwath, M., Moran, K., Dosso, S. E., & Rohr, K. M. (2023). Fault Slip Tendency Analysis for a Deep-Sea Basalt CO2 Injection in the Cascadia Basin. GeoHazards, 4, 121-135.
https://doi.org/10.3390/geohazards4020008
[27]  Fleury, M., Pironon, J., Le Nindre, Y. M., Bildstein, O., Berne, P., Lagneau, V. et al. (2010). Evaluating Sealing Efficiency of Caprocks for CO2 Storage: An Overview of the Geocarbone-Integrity Program and Results. Oil & Gas Science and Technology, 65, 435-444.
https://doi.org/10.2516/ogst/2010007
[28]  Frerichs, J., Rakoczy, J., Ostertag-Henning, C., & Kruger, M. (2014). Viability and Adaptation Potential of Indigenous Microorganisms from Natural Gas Field Fluids in High Pressure Incubations with Supercritical CO2. Environmental Science & Technology, 48, 1306-1314.
https://doi.org/10.1021/es4027985
[29]  Gao, R. S., Sun, A. Y., & Nicot, J. P. (2016). Identification of a Representative Dataset for Long-Term Monitoring at the Weyburn CO2-Injection Enhanced Oil Recovery Site, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 54, 454-465.
https://doi.org/10.1016/j.ijggc.2016.05.028
[30]  Garapati, N., Randolph, J. B., & Saar, M. O. (2015). Brine Displacement by CO2, Energy Extraction Rates, and Lifespan of a CO2-Limited CO2-Plume Geothermal (CPG) System with a Horizontal Production Well. Geothermics, 55, 182-194.
https://doi.org/10.1016/j.geothermics.2015.02.005
[31]  GCCSI (2011). Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide.
[32]  GCCSI (2017). Alberta Carbon Trunk Line (“ACTL”) with North West Sturgeon Refinery CO2 Stream. Global CCS Institute.
https://co2re.co/FacilityData
[33]  Ghavipour, M., Ghavipour, M., Chitsazan, M., Najibi, S. H., & Ghidary, S. S. (2013). Experimental Study of Natural Gas Hydrates and a Novel Use of Neural Network to Predict Hydrate Formation Conditions. Chemical Engineering Research and Design, 91, 264-273.
https://doi.org/10.1016/j.cherd.2012.08.010
[34]  Gilliland, E. S., Ripepi, N., Conrad, M., Miller, M. J., & Karmis, M. (2013). Selection of Monitoring Techniques for a Carbon Storage and Enhanced Coalbed Methane Recovery Pilot Test in the Central Appalachian Basin. International Journal of Coal Geology, 118, 105-112.
https://doi.org/10.1016/j.coal.2013.07.007
[35]  Gilliland, E., Ripepi, N., Karmis, M., & Conrad, M. (2012). An Examination of MVA Techniques Applicable for CCUS in Thin, Stacked Coals of the Central Appalachian Basin. 29th Annual International Pittsburgh Coal Conference 2012, 3, 1931-1938.
[36]  Gunter, W. D., Bachu, S., & Benson, S. (2004). The Role of Hydrogeological and Geochemical Trapping in Sedimentary Basins for Secure Geological Storage of Carbon Dioxide. Geological Society London, 233, 129-145.
https://doi.org/10.1144/GSL.SP.2004.233.01.09
[37]  Han, Y., & Winston Ho, W. S. (2020). Recent Advances in Polymeric Facilitated Transport Membranes for Carbon Dioxide Separation and Hydrogen Purification. Journal of Polymer Science, 58, 2435-2449.
https://doi.org/10.1002/pol.20200187
[38]  Hanak, D. P., Anthony, E. J., & Manovic, V. (2015). A Review of Developments in Pilot-Plant Testing and Modelling of Calcium Looping Process for CO2 Capture from Power Generation Systems. Energy & Environmental Science, 8, 2199-2249.
https://doi.org/10.1039/C5EE01228G
[39]  Heinemann, N., Stewart, R. J., Wilkinson, M., Pickup, G. E., & Haszeldine, R. S. (2016). Hydrodynamics in Subsurface CO2 Storage: Tilted Contacts and Increased Storage Security. International Journal of Greenhouse Gas Control, 54, 322-329.
https://doi.org/10.1016/j.ijggc.2016.10.003
[40]  Hofmann, M., & Schellnhuber, H. J. (2010). Ocean Acidification: A Millennial Challenge. Energy & Environmental Science, 3, 1883-1896.
https://doi.org/10.1039/c000820f
[41]  Huijgen, W., Witkamp, G., & Comans, R. (2005). Carbon Dioxide Sequestration by Mineral Carbonation. Energy Research Centre of the Netherlands (ECN).
[42]  Hutcheon, I., Shevalier, M., Durocher, K., Bloch, J., Johnson, G., Nightingale, M., & Mayer, B. (2016). Interactions of CO2 with Formation Waters, Oil and Minerals and CO2 Storage at the Weyburn IEA EOR Site, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 53, 354-370.
https://doi.org/10.1016/j.ijggc.2016.08.004
[43]  IEAGHG (2009a). CO2 Storage in Depleted Gas Fields.
[44]  IEAGHG (2009b). Long Term Integrity of CO2 Storage—Well Abandonment.
[45]  IEAGHG (2011). Effects of Impurities on Geological Storage of CO2. Cheltenham.
[46]  Igunnu, E. T., & Chen, G. Z. (2014). Produced Water Treatment Technologies. International Journal of Low-Carbon Technologies, 9, 157-177.
https://doi.org/10.1093/ijlct/cts049
[47]  International Energy Agency (IEA) (2015). Storing CO2 through Enhanced Oil Recovery, Combining EOR with CO2 Storage (EOR) for Profit.
[48]  IPCC (2005). Special Report on Carbon Dioxide Capture and Storage.
[49]  IPCC (2018). Special Report on Global Warming, Summary for Policymakers.
[50]  Jaramillo, P., Griffin, W. M., & Matthews, H. S. (2008). Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT Liquid Fuels from Coal and Natural Gas. Environmental Science & Technology, 42, 7559-7565.
https://doi.org/10.1021/es8002074
[51]  Jarrell, P. M., Fox, C. E., Stein, M. H., & Webb, S. L. (2002). Practical Aspects of CO2 Flooding. SPE Monograph Series No. 22, 220 p.
https://doi.org/10.2118/9781555630966
[52]  Javaheri, M., & Jessen, K. (2011). Residual Trapping in Simultaneous Injection of CO2 and Brine in Saline Aquifers. In SPE Western North America and Rocky Mountain Joint Regional Meeting (p. 603). Society of Petroleum Engineers.
https://doi.org/10.2118/144613-MS
[53]  Jemai, K., Kvamme, B., & Vafæi, M. T. (2014). Theoretical Studies of CO2 Hydrates Formation and Dissociation in Cold Aquifers Using RetrasoCodeBright Simulator. WSEAS Transactions on Heat and Mass Transfer, 9, 150-168.
[54]  Khabibullin, T., Falcone, G., & Teodoriu, C. (2011). Drilling through Gas-Hydrate Sediments: Managing Wellbore-Stability Risks. SPE Drilling & Completion, 26, 287-294.
https://doi.org/10.2118/131332-PA
[55]  Kim, Y., Jang, H., Kim, J., & Lee, J. (2017). Prediction of Storage Efficiency on CO2 Sequestration in Deep Saline Aquifers Using Artificial Neural Network. Applied Energy, 185, 916-928.
https://doi.org/10.1016/j.apenergy.2016.10.012
[56]  Kneafsey, T. J., & Pruess, K. (2010). Laboratory Flow Experiments for Visualizing Carbon Dioxide-Induced, Density-Driven Brine Convection. Transport in Porous Media, 82, 123-139.
https://doi.org/10.1007/s11242-009-9482-2
[57]  Krooss, B. M., Van Bergen, F., Gensterblum, Y., Siemons, N., Pagnier, H. J. M., & David, P. (2002). High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51, 69-92.
https://doi.org/10.1016/S0166-5162(02)00078-2
[58]  Kuuskraa, V., & Ferguson, R. (2008). Storing CO2 with Enhanced Oil Recovery. National Energy Technology Laboratory.
[59]  Lakeman, B. (2016). Alberta Research Council Enhanced Coalbed Methane Recovery Project in Alberta, Canada. Alberta Research Council (ARC) Inc.
[60]  Le Gallo, Y., Couillens, P., & Manai, T. (2002). CO2 Sequestration in Depleted Oil or Gas Reservoirs. In International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production (pp. 1390-1392). Society of Petroleum Engineers.
https://doi.org/10.2118/74104-MS
[61]  Li, Q., Wei, Y. N., Liu, G., & Lin, Q. (2014). Combination of CO2 Geological Storage with Deep Saline Water Recovery in Western China: Insights from Numerical Analyses. Applied Energy, 116, 101-110.
https://doi.org/10.1016/j.apenergy.2013.11.050
[62]  Li, S., Wang, P., & Wang, Z. (2023). Strategy to Enhance Geological CO2 Storage Capacity in Saline Aquifer. Geophysical Research Letters, 50, e2022GL101431.
https://doi.org/10.1029/2022GL101431
[63]  Mabon, L., & Shackley, S. (2013). Public Engagement in Discussing Carbon Capture and Storage. In World Social Science Report 2013—Changing Global Environments (pp. 398-403). ISSC, UNESCO.
https://doi.org/10.1787/9789264203419-71-en
[64]  MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G. et al. (2013). An Overview of CO2 Capture Technologies. Energy & Environmental Science, 3, 1645-1669.
https://doi.org/10.1039/c004106h
[65]  Marston, P. (2013). Bridging the Gap: An Analysis and Comparison of Legal and Regulatory Frameworks for CO2-EOR and CO2-CCS. Global CCS Institute.
[66]  Masuda, Y., Yamanaka, Y., Sasai, Y., Magi, M., & Ohsumi, T. (2009). Site Selection in CO2 Ocean Sequestration: Dependence of CO2 Injection Rate on Eddy Activity Distribution. International Journal of Greenhouse Gas Control, 3, 67-76.
https://doi.org/10.1016/j.ijggc.2008.07.002
[67]  Matter, J. M., Broecker, W. S., Gislason, S. R., Gunnlaugsson, E., Oelkers, E. H., Stute, M. et al. (2011). The CarbFix Pilot Project—Storing Carbon Dioxide in Basalt. Energy Procedia, 4, 5579-5585.
https://doi.org/10.1016/j.egypro.2011.02.546
[68]  Matter, J. M., Stute, M., Snæbjörnsdottir, S. ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S. et al. (2016). Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions. Science, 352, 1312-1314.
https://doi.org/10.1126/science.aad8132
[69]  McGrail, B. P., Schæf, H. T., Ho, A. M., Chien, Y.-J., Dooley, J. J., & Davidson, C. L. (2006). Potential for Carbon Dioxide Sequestration in Flood Basalts. Journal of Geophysical Research: Solid Earth, 111.
https://doi.org/10.1029/2005JB004169
[70]  MIT (2015). Carbon Capture and Sequestration Technologies. Massachusetts Institute of Technology.
https://sequestration.mit.edu/tools/projects/index.html
[71]  Na, J., Xu, T., Yuan, Y., Feng, B., Tian, H., & Bao, X. (2015). An Integrated Study of Fluid-Rock Interaction in a CO2-Based Enhanced Geothermal System: A Case Study of Songliao Basin, China. Applied Geochemistry, 59, 166-177.
https://doi.org/10.1016/j.apgeochem.2015.04.018
[72]  Nobre, C. A., Sellers, P. J., & Shukla, J. (1991). Amazonian Deforestation and Regional Climate Change. Journal of Climate, 4, 957-988.
https://www.jstor.org/stable/26196408?saml_data=eyJzYW1sVG9rZW4iOiJjNGVkZDY0OC 1kOTNlLTQxZWMtODE0ZS04M2NhMzA3ZjJhYjIiLCJpbnN0aXR1dGlvbklkcyI6WyI1ZjhlMTUzZS02MzI1LTQ 5NTgtOWRmZC0xOTBjNjg1YjE0MDQiXX0#metadata_info_tab_contents
[73]  Olajire, A. A. (2013). A Review of Mineral Carbonation Technology in Sequestration of CO2. Journal of Petroleum Science and Engineering, 109, 364-392.
https://doi.org/10.1016/j.petrol.2013.03.013
[74]  Oldenburg, C. M. (2003). Carbon Sequestration in Natural Gas Reservoirs: Enhanced Gas Recovery and Natural Gas Storage. Lawrence Berkeley National Laboratory.
[75]  Perera, M. S. A., Gamage, R. P., Rathnaweera, T. D., Ranathunga, A. S., Koay, A., & Choi, X. A. (2016). Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies, 9, Article 481.
https://doi.org/10.3390/en9070481
[76]  Plaksina, T., & White, C. (2016). Modeling Coupled Convection and Carbon Dioxide Injection for Improved Heat Harvesting in Geopressured Geothermal Reservoirs. Geothermal Energy, 4, Article No. 2.
https://doi.org/10.1186/s40517-016-0044-x
[77]  Pollyea, R. M., Fairley, J. P., Podgorney, R. K., & Mcling, T. L. (2014). Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations. Bulletin of the Geological Society of America, 126, 344-351.
https://doi.org/10.1130/B30874.1
[78]  Porter, R. T. J., Fairweather, M., Pourkashanian, M., & Woolley, R. M. (2015). The Range and Level of Impurities in CO2 Streams from Different Carbon Capture Sources. International Journal of Greenhouse Gas Control, 36, 161-174.
https://doi.org/10.1016/j.ijggc.2015.02.016
[79]  Procesi, M., Cantucci, B., Buttinelli, M., Armezzani, G., Quattrocchi, F., & Boschi, E. (2013). Strategic Use of the Underground in an Energy Mix Plan: Synergies among CO2, CH4 Geological Storage and Geothermal Energy. Latium Region Case Study (Central Italy). Applied Energy, 110, 104-131.
https://doi.org/10.1016/j.apenergy.2013.03.071
[80]  Pruess, K. (2006). Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics, 35, 351-367.
https://doi.org/10.1016/j.geothermics.2006.08.002
[81]  Quattrocchi, F., Boschi, E., Spena, A., Buttinelli, M., Cantucci, B., & Procesi, M. (2013). Synergic and Conflicting Issues in Planning Underground Use to Produce Energy in Densely Populated Countries, as Italy. Geological Storage of CO2, Natural Gas, Geothermics and Nuclear Waste Disposal. Applied Energy, 101, 393-412.
https://doi.org/10.1016/j.apenergy.2012.04.028
[82]  Rehder, G., Leifer, I., Brewer, P. G., Friederich, G., & Peltzer, E. T. (2009). Controls on Methane Bubble Dissolution inside and outside the Hydrate Stability Field from Open Ocean Field Experiments and Numerical Modeling. Marine Chemistry, 114, 19-30.
https://doi.org/10.1016/j.marchem.2009.03.004
[83]  Rochelle, C. A., Camps, A. P., Long, D., Milodowski, A., Bateman, K., Gunn, D., Jackson, P., Lovell, M. A., & Rees, J. (2009). Can CO2 Hydrate Assist in the Underground Storage of Carbon Dioxide? Geological Society Special Publication, 319, 171-183.
https://doi.org/10.1144/SP319.14
[84]  Ruffine, L., Donval, J. P., Charlou, J. L., Cremière, A., & Zehnder, B. H. (2010). Experimental Study of Gas Hydrate Formation and Destabilisation Using a Novel High-Pressure Apparatus. Marine and Petroleum Geology, 27, 1157-1165.
https://doi.org/10.1016/j.marpetgeo.2010.03.002
[85]  Seifritz, W. (1990). CO2 Disposal by Means of Silicates. Nature, 345, 486.
https://doi.org/10.1038/345486b0
[86]  Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A Review of Studies on CO2 Sequestration and Caprock Integrity. Fuel, 89, 2651-2664.
https://doi.org/10.1016/j.fuel.2010.05.012
[87]  Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren, H., & Haug, G. H. (2021). The Southern Ocean during the Ice Ages: A Review of the Antarctic Surface Isolation Hypothesis, with Comparison to the North Pacific. Quaternary Science Reviews, 254, Article 106732.
https://doi.org/10.1016/j.quascirev.2020.106732
[88]  Song, J., & Zhang, D. (2013). Comprehensive Review of Caprock-Sealing Mechanisms for Geologic Carbon Sequestration. Environmental Science & Technology, 47, 9-22.
https://doi.org/10.1021/es301610p
[89]  Sundal, A., Hellevang, H., Miri, R., Dypvik, H., Nystuen, J. P., & Aagaard, P. (2014). Variations in Mineralization Potential for CO2 Related to Sedimentary Facies and Burial Depth—A Comparative Study from the North Sea. Energy Procedia, 63, 5063-5070.
https://doi.org/10.1016/j.egypro.2014.11.536
[90]  Szizybalski, A., Kollersberger, T., Möller, F., Martens, S., Liebscher, A., & Kuhn, M. (2014). Communication Supporting the Research on CO2 Storage at the Ketzin Pilot Site, Germany—A Status Report after Ten Years of Public Outreach. Energy Procedia, 51, 274-280.
https://reader.elsevier.com/reader/sd/pii/S1876610214008947?token=10B64E5A1D23D16D86B29D14466B1CE4BCAF556D3264EC284914F038F0B4716FC9FDBC1381E41B0FEBCC90BC579D72B8&originRegion=eu-west-1&originCreation=20220825114237
[91]  Talaghat, M. R., Esmæilzadeh, F., & Fathikaljahi, J. (2009). Experimental and Theoretical Investigation of Simple Gas Hydrate Formation with or without Presence of Kinetic Inhibitors in a Flow Mini-Loop Apparatus. Fluid Phase Equilibria, 279, 28-40.
https://doi.org/10.1016/j.fluid.2009.01.017
[92]  Tanhua, T., Orr, J. C., Lorenzoni, L., & Hansson, L. (2015). Monitoring Ocean Carbon and Ocean Acidification. WMO Bulletin, 64.
[93]  Tapia, J. F. D., Lee, J. Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2018). A Review of Optimization and Decision-Making Models for the Planning of CO2 Capture, Utilization and Storage (CCUS) Systems. Sustainable Production and Consumption, 13, 1-15.
https://doi.org/10.1016/j.spc.2017.10.001
[94]  Tenasaka, I. (2011). Bridging the Commercial Gap for Carbon Capture and Storage July 2011. Global CCS Institute.
[95]  Thomas, S. (2008). Enhanced Oil Recovery—An Overview. Oil & Gas Science and Technology, 63, 9-19.
https://doi.org/10.2516/ogst:2007060
[96]  Trémosa, J., Castillo, C., Vong, C. Q., Kervévan, C., Lassin, A., & Audigane, P. (2014). Long-Term Assessment of Geochemical Reactivity of CO2 Storage in Highly Saline Aquifers: Application to Ketzin, in Salah and Snøhvit Storage Sites. International Journal of Greenhouse Gas Control, 20, 2-26.
https://doi.org/10.1016/j.ijggc.2013.10.022
[97]  Van Pham, T. H., Aagaard, P., & Hellevang, H. (2012). On the Potential for CO2 Mineral Storage in Continental Flood Basalts—PHREEQC Batch—And 1D Diffusion-Reaction Simulations. Geochemical Transactions, 13, Article No. 5.
https://doi.org/10.1186/1467-4866-13-5
[98]  Verdon, J. P. (2016). Using Microseismic Data Recorded at the Weyburn CCS-EOR Site to Assess the Likelihood of Induced Seismic Activity. International Journal of Greenhouse Gas Control, 54, 421-428.
https://doi.org/10.1016/j.ijggc.2016.03.018
[99]  Wdowin, M., Tarkowski, R., & Manecki, M. (2013). Petrographic-Mineralogical and Textural Changes in Reservoir and Sealing Rocks (Zaosie Anticline) as a Result of a Long-Term Experiment in CO2-Brine-Rock Interactions. Gospodarka Surowcami Mineralnymi—Mineral Resources Management, 29, 137-153.
https://doi.org/10.2478/gospo-2013-0044
[100]  Wei, N., Li, X., Jiao, Z., Stauffer, P. H., Liu, S., Ellett, K., & Middleton, R. S. (2022). A Hierarchical Framework for CO2 Storage Capacity in Deep Saline Aquifer Formations. Frontiers in Earth Science, 9, Article 777323.
https://doi.org/10.3389/feart.2021.777323
[101]  White, D. (2009). Monitoring CO2 Storage during EOR at the Weyburn-Midale Field. The Leading Edge, 28, 838-842.
https://doi.org/10.1190/1.3167786
[102]  Xu, Y., Ishizaka, J., & Aoki, S. (1999). Simulations of the Distribution of Sequestered CO2 in the North Pacific Using a Regional General Circulation Model. Energy Conversion and Management, 40, 683-691.
https://doi.org/10.1016/S0196-8904(98)00138-1
[103]  Yamasaki, A. (2003). An Overview of CO2 Mitigation Options for Global Warming—Emphasizing CO2 Sequestration Options. Journal of Chemical Engineering of Japan, 36, 361-375.
https://doi.org/10.1252/jcej.36.361
[104]  Yang, F., Pang, Z., Lin, L., Jia, Z., Zhang, F., Duan, Z., & Zong, Z. (2013). Hydrogeochemical and Isotopic Evidence for Trans-Formational Flow in a Sedimentary Basin: Implications for CO2 Storage. Applied Geochemistry, 30, 4-15.
https://doi.org/10.1016/j.apgeochem.2012.08.024
[105]  Yang, K., Pinker, R.T., Ma, Y., Koike, T., Wonsick, M.M., Cox, S.J., Zhang, Y.-C., and Stackhouse, P. (2008). Evaluation of Satellite Estimates of Downward Shortwave Radiation over the Tibetan Plateau. Journal of Geophysical Research, 113, D17204.
https://doi.org/10.1029/2007JD009736
[106]  Zaluski, W., El-Kaseeh, G., Lee, S. Y., Piercey, M., & Duguid, A. (2016). Monitoring Technology Ranking Methodology for CO2-EOR Sites Using the Weyburn-Midale Field as a Case Study. International Journal of Greenhouse Gas Control, 54, 466-478.
https://doi.org/10.1016/j.ijggc.2016.06.012
[107]  Zangeneh, H., Jamshidi, S., & Soltanieh, M. (2013). Coupled Optimization of Enhanced Gas Recovery and Carbon Dioxide Sequestration in Natural Gas Reservoirs: Case Study in a Real Gas Field in the South of Iran. International Journal of Greenhouse Gas Control, 17, 515-522.
https://doi.org/10.1016/j.ijggc.2013.06.007
[108]  ZeroCO2 (2015). CCS-International Legislation. Zero Emission Resource Organisation.
[109]  Zhao, X., Liao, X., Wang, W., Chen, C., Rui, Z., & Wang, H. (2014). The CO2 Storage Capacity Evaluation: Methodology and Determination of Key Factors. Journal of the Energy Institute, 87, 297-305.
https://doi.org/10.1016/j.joei.2014.03.032

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413