全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Green Chemistry Allometry Test of Microwave-Assisted Synthesis of Transition Metal Nanostructures

DOI: 10.4236/ajac.2023.1411029, PP. 493-518

Keywords: Microwave-Assisted Synthesis, Transition Metals Nanostructures, Allometry Scaling, Power-Law Signature, Green Chemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol-1) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry.

References

[1]  Anastas, P. and Eghbali, N. (2010) Green Chemistry: Principles and Practice. Chemical Society Reviews, 39, 301-312.
https://doi.org/10.1039/B918763B
[2]  Bharadwaj, et al. (2021) Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules, 26, 6389.
https://doi.org/10.3390/molecules26216389
[3]  Joudeh, N. and Linke, D. (2022) Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. Journal of Nanobiotechnology, 20, Article No. 262.
https://doi.org/10.1186/s12951-022-01477-8
[4]  Grewal, A.S., Kumar, K., Redhu, S. and Bhardwaj, S. (2013) Microwave Assisted Synthesis: A Green Synthesis Chemistry Approach. International Research Journal of Pharmaceutical and Applied Sciences, 3, 278-285.
[5]  Law, V.J. and Dowling, D.P. (2022) Microwave-Assisted Inactivation of Fomite-Micro-organism Systems: Energy Phase-Space Projection. American Journal Analytical Chemistry, 13, 255-276.
https://doi.org/10.4236/ajac.2022.137018
[6]  Law, V.J. and Dowling, D.P. (2023) Revisiting “Non-Thermal” Batch Microwave Oven Inactivation of Microorganisms. American Journal of Analytical Chemistry, 14, 28-54.
https://doi.org/10.4236/ajac.2023.141003
[7]  Law, V.J. and Dowling, D.P. (2023) Microwave-Assisted Au and Ag Nanoparticle Synthesis: An Energy Phase-Space Projection Analysis. American Journal Analytical Chemistry, 14, 149-174.
https://doi.org/10.4236/ajac.2023.144009
[8]  Law, V.J. and Dowling, D.P. (2023) Microwave-Assisted Transition Metal Nanostructure Synthesis: Power-Law Signature Verification. American Journal Analytical Chemistry, 14, 326-349.
https://doi.org/10.4236/ajac.2023.148018
[9]  Huxley, J.S. and Teissier, G. (1936) Terminology of Relative Growth. Nature, 137, 780-781.
https://doi.org/10.1038/137780b0
[10]  Huxley, J.S. and Teissier, G. (1936) Terminologie et notation dans la description de la croissance relative. Comptes rendus des séances de la Société de biologie et de ses filiales, 121, 934-937.
[11]  Gayon, J. (2000) History of the Concept of Allometry. American Zoologist, 40, 748-758.
https://doi.org/10.1093/icb/40.5.748
[12]  Galilie, G. (1684) Discorsi e dimostrazioni matematiche intorno á due nuove scienze attinenti alla meccanica & i movimenti locali. Appresso gli Elsevirii.
[13]  Thompson, D.W. (1917) On Growth of Forms. Cambridge University Press, Cambridge.
[14]  Pézard, A. (1918) Le conditionnement physiologique des caractères sexuels secondaires chez les oiseaux. Bulletin Biologique de la France et de la Belgique, 52, 1-176.
[15]  Huxley, J.S. (1924) The Variation in the Width of the Abdomen in Immature Fiddler Crabs Considered in Relation to Its Relative Growth-Rate. The American Naturalist, 58, 468-475.
https://doi.org/10.1086/279998
[16]  Champy, C. (1924) Sexualite et Hormones. Doin, Paris.
[17]  Dong, H., Li, M., Liu, R., Wu, C. and Wu, J. (2017) Allometric Scaling in Scientific Fields. Scientometrics, 112, 583-594.
https://doi.org/10.1007/s11192-017-2333-y
[18]  Lamont, B.B., Williams, M.R. and He, T. (2023) Relative Growth Rate (RGR) and Other Confounded Variables: Mathematical Problems and Biological Solutions. Annals of Botany, 131, 555-567.
https://doi.org/10.1093/aob/mcad031
[19]  Kleiber, M. (1932) Body Size and Metabolism. Hilgardia, 6, 315-353.
https://doi.org/10.3733/hilg.v06n11p315
[20]  Kleiber, M. (1947) Body Size and Metabolic Rate. Physiological Review, 27, 511-541.
https://doi.org/10.1152/physrev.1947.27.4.511
[21]  Niklas, K.J. and Kutschera, U. (2015) Kleiber’s Law: How the Fire of Life Ignited Debate, Fueled Theory, and Neglected Plants as Model Organisms. Plant Signaling & Behavior, 10, e1036216.
https://doi.org/10.1080/15592324.2015.1036216
[22]  Rue, A.R.P. (2002) Biological Scaling and Physics. Journal of Biosciences, 27, 475-478.
https://doi.org/10.1007/BF02705043
[23]  Stumpf, M.P.H. and Porter, M.A. (2012) Critical Truths about Power Laws. Science, 355, 665-666.
https://doi.org/10.1126/science.1216142
[24]  Andriani, P. and McKelvey, B. (2009) From Gaussian to Paretian Thinking: Causes and Implications of Power Laws in Organizations. Perspective Organization Science, 20, 1053-1071.
https://doi.org/10.1287/orsc.1090.0481
[25]  Roman, S. and Bertolotti, F. (2020) A Master Equation for Power Laws. Royal Society Open Science, 9, Article ID: 220531.
https://doi.org/10.1098/rsos.220531
[26]  West, G.B., Brown, J.H. and Enquist, B. (1997) A General Model for the Origin of Allometric Scaling Laws in Biology. Science, 276, 122-126.
https://doi.org/10.1126/science.276.5309.122
[27]  West, G.B., Brown, J.H. and Enquist, B.J. (1999) A General Model for the Structure and Allometry of Plant Vascular Systems. Nature, 399, 664-667.
https://doi.org/10.1038/23251
[28]  Lindstedt, S.L. (1981) Body Size, Physiological Time, and Longevity of Homeothermic Animals. The Quarterly Review of Biology, 56, 1-16.
https://doi.org/10.1086/412080
[29]  Agutter, P.S. and Tuszynski, J.A. (2011) Analytic Theories of Allometric Scaling. The Journal of Experimental Biology, 214, 1055-1062.
https://doi.org/10.1242/jeb.054502
[30]  Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. and Charnov, E.L. (2001) Effect of Size and Temperature on Metabolic Rate. Science, 293, 2248-2251.
https://doi.org/10.1126/science.1061967
[31]  Downs, C.J., Hayes, J.P. and Tracy, C.T. (2008) Scaling Metabolic Rate with Body Mass and Inverse Temperature: A Test of the Arrhenius Fractal Supply Model. Functional Ecology, 22, 239-244.
https://doi.org/10.1111/j.1365-2435.2007.01371.x
[32]  Dedrick, R.L., Bischolt, K.B. and Zaharko, D.Z. (1970) Interspecies Correlation of Plasma Concentration History of Methotrexate (NSC-740). Cancer Chemotherapy Reports, Part 1, 54, 95-101.
[33]  Boxenbaum, H. (1981) Interspecies Scaling, Allometry, Physiological Time, and the Ground Plan of Pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics, 10, 201-227.
https://doi.org/10.1007/BF01062336
[34]  Boxenham, H. and Fertig, J.B. (1984) Scaling of Antipyrine Intrinsic Clearance of Unbound Drug in 15 Mammalian Species. European Journal of Drug Metabolism and Pharmacokinetics, 9, 177-183.
https://doi.org/10.1007/BF03189622
[35]  Gilibili, R.R., Bhamidipati, R.K., Mullangi, R. and Srinivas, N.R. (2015) Retrospective and Prospective Human Intravenous and Oral Pharmacokinetic Projection of Dipeptidyl Peptidase-IV Inhibitors Using Simple Allometric Principles-Case Studies of ABT-279, ABT-341, Alogliptin, Carmegliptin, Sitagliptin and Vildagliptin. Journal of Pharmacy & Pharmaceutical Sciences, 18, 434-447.
https://doi.org/10.18433/J3TK55
[36]  Andresen, B., Shiner, J.S. and Uehlinger, D.E. (2002) Allometric Scaling and Maximum Efficiency in Physiological Eigen Time. Proceedings of the National Academy of Sciences, 99, 5822-5824.
https://doi.org/10.1073/pnas.082633699
[37]  Liu, S., Maljovec, D., Wang, B., Bremer, P.T. and Pascucci, V. (2017) Visualizing High-Dimensional Data: Advances in the Past Decade. IEEE Transaction on Visualization and Computer Graphs, 23, 1249-1268.
https://doi.org/10.1109/TVCG.2016.2640960
[38]  Pal, J., Deb, M.K. and Deshmukh, D.K. (2014) Microwave-Assisted Synthesis of Silver Nanoparticles Using Benzo-18-crown-6 as Reducing and Stabilizing Agent. Applied Nanoscience, 4, 507-510.
https://doi.org/10.1007/s13204-013-0229-6
[39]  Li, D. and Komarneni, S. (2006) Synthesis of Pt Nanoparticles and Nanorods by Microwave-Assisted Solvothermal Technique. Zeitschrift fuer Naturforschung. B, 61, 1566-1572.
https://doi.org/10.1515/znb-2006-1214
[40]  Law, V.J. and Dowling, D.P. (2021) Microwave Generated Steam Decontamination of Respirators: Dielectric Considerations. Global Journal of Research in Engineering & Computer Sciences, 1, 6-21.
[41]  Rana, K.K. and Rana, S. (2014) Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications. Open Access Library Journal, 1, e686.
https://doi.org/10.4236/oalib.1100686
[42]  Patil, N.G., Rebrov, E.V., Eranen, K., Benaskar, F., Meuldijk, J., Mikkola, J.P., Hessel, V., Hulshof, L.A., Murzin, D.Y. and Schouten, J.C. (2012) Effect of the Load Size on the Efficiency of Microwave Heating under Stop Flow and Continuous Flow Conditions. Journal of Microwave Power and Electromagnetic Energy, 46, 83-92.
https://doi.org/10.1080/08327823.2012.11689827
[43]  Welton, T. (2015) Solvents and Sustainable Chemistry. Proceedings of the Royal Society A, 471, Article ID: 20150502.
https://doi.org/10.1098/rspa.2015.0502
[44]  Cao, J. and Wang, J. (2004) Microwave-Assisted Synthesis of Flower-Like ZnO Nanosheet Aggregates in a Room-Temperature Ionic Liquid. Chemistry Letters, 33, 1332-1333.
https://doi.org/10.1246/cl.2004.1332
[45]  Krishnapriya, R., Praneetha, S. and Murugan, A.V. (2016) Investigation of the Effect of Reaction Parameters on the Microwave-Assisted Hydrothermal Synthesis of Hierarchical Jasmine-Flower-Like ZnO Nanostructures for Dye-Sensitized Solar Cells. New Journal of Chemistry, 40, 5080-5089.
https://doi.org/10.1039/C6NJ00457A
[46]  Cao, Y., Liu, B., Huang, R., Xia, Z. and Flash, S.G. (2011) synthesis of Flower-Like ZnO Nanostructures by Microwave-Induced Combustion Process. Materials Letters, 65, 160-163.
https://doi.org/10.1016/j.matlet.2010.09.072
[47]  Li, H., Liu, E., Chan, F.Y.E., Lu, Z. and Chen, R. (2011) Fabrication of Ordered Flower-Like ZnO Nanostructures by a Microwave and Ultrasonic Combined Technique and Their Enhanced Photocatalytic Activity. Materials Letters, 65, 3440-3443.
https://doi.org/10.1016/j.matlet.2011.07.049
[48]  Hasanpoor, M., Aliofkhazraei, M. and Delavari, H. (2015) Microwave-Assisted Synthesis of Zinc Oxide Nanoparticles. Procedia Materials Science, 11, 320-325.
https://doi.org/10.1016/j.mspro.2015.11.101
[49]  Liu, H., Liu, H., Yang, J., Zhai, H., Liu, X. and Jia, H. (2019) Microwave-Assisted One-Pot Synthesis of Ag Decorated Flower-Like ZnO Composites Photocatalysts for Dye Degradation and NO Removal. Ceramics International, 45, 20133-20140.
https://doi.org/10.1016/j.ceramint.2019.06.279
[50]  Aljaafari, A., Ahmed, F., Awada, C. and Shaalan, N.M. (2020) Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility. Frontiers in Chemistry, 8, Article No. 456.
https://doi.org/10.3389/fchem.2020.00456
[51]  Cai, Y. and Hung, J. (2023) Preparation and Photocatalysis Characteristics of Flower-Like ZnO by Microwave Method. Journal of Physics: Conference Series, 2437, Article ID: 012039.
https://doi.org/10.1088/1742-6596/2437/1/012039
[52]  Li, X., Wang, C., Zhou, X., Liu, J., Sun, P. and Lu, G. (2014) Gas Sensing Properties of Flower-Like ZnO Prepared by a Microwave-Assisted Technique. Royal Society of Chemistry Advances, 4, 47319-47324.
https://doi.org/10.1039/C4RA07425D
[53]  Wojnarowicz, J., Chudoba, T., Gierlotka, S., Sobczak, K. and Lojkowski, W. (2018) Size Control of Cobalt-Doped ZnO Nanoparticles Obtained in Microwave Solvothermal Synthesis. Crystals, 8, Article No. 179.
https://doi.org/10.3390/cryst8040179
[54]  Wojnarowicz, J., Opalinska, A., Chudoba, T., Gierlotka, S., Mukhovskyi, R., Pietrzykowska, E., Sobczak, K. and Lojkowski, W. (2016) Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis. Journal of Nanomaterials, 2016, Article ID: 2789871.
https://doi.org/10.1155/2016/2789871
[55]  Wojnarowicz, J. (2023) Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland. Private Communication regarding Operating Pressure of ERTEC Microwave Applicator Used in Reference [53].
[56]  Rademacher, L., Yen Beglau, T.H., Heinen, T., Barthel and Janiak, C. (2020) Microwave-Assisted Synthesis of Iridium Oxide and Palladium Nanoparticles Supported on a Nitrogen-Rich Covalent Triazine Framework as Superior Electrocatalysts for the Hydrogen Evolution and Oxygen Reduction Reaction. Frontiers of Chemistry, 10, Article No. 94526.
https://doi.org/10.3389/fchem.2022.945261
[57]  Elazab, H.A., Moussa, S., Gupton, B.F. and El-Shall, M.S. (2014) Microwave-Assisted Synthesis of Pd Nanoparticles Supported on Fe3O4, Co3O4, and Ni(OH)2 Nanoplates and Catalysis Application for CO Oxidation. Journal of Nanoparticle Research, 16, Article No. 2477.
https://doi.org/10.1007/s11051-014-2477-0
[58]  Elazab, H.A., Sadek, M.A. and El-Idreesy, T.T. (2018) Microwave-Assisted Synthesis of Palladium Nanoparticles Supported on Copper Oxide in Aqueous Medium as an Efficient Catalyst for Suzuki Cross-Coupling Reaction. Adsorption Science & Technology, 36, 135-1365.
https://doi.org/10.1177/0263617418771777
[59]  Saha, S., Malik, M.M. and Qureshi, M.S. (2013) Microwave Synthesis of Silver Nano Particles. Nano Hybrids, 4, 99-112.
https://doi.org/10.4028/www.scientific.net/NH.4.99
[60]  Iqbal, N., Kadir, M.R.A., Malek, N.A.N.N., Mahmood, N.H.B., Murali, M.R. and Kamarul, T. (2013) Characterization and Antibacterial Properties of Stable Silver Substituted Hydroxyapatite Nanoparticles Synthesized through Surfactant Assisted Microwave Process. Materials Research. Bulletin, 48, 3172-3177.
https://doi.org/10.1016/j.materresbull.2013.04.068
[61]  Jyothi, D., Cherriyan, S.P., Ahmed, S.R.R., Priya, S. and James, J.P. (2020) Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Coleus Amboinicus Leaf Extract. International Journal of Applied Pharmaceutics, 12, 56-61.
https://doi.org/10.22159/ijap.2020v12i3.37121
[62]  Ahmed, F., AlOmar, S.Y., Albalawi, F., Arshi, N., Dwivedi, S., Kumar, S., Shaalan, N.M. and Ahmad, N. (2021) Microwave Mediated Fast Synthesis of Silver Nanoparticles and Investigation of Their Antibacterial Activities for Gram-Positive and Gram-Negative Microorganisms. Crystals, 11, Article No. 666.
https://doi.org/10.3390/cryst11060666
[63]  Chen, J., Wang, J., Zhang, X. and Jin, Y. (2008) Microwave-Assisted Green Synthesis of Silver Nanoparticles by Carboxymethyl Cellulose Sodium and Silver Nitrate. Materials Chemistry and Physics, 108, 421-424.
https://doi.org/10.1016/j.matchemphys.2007.10.019
[64]  Karimipour, M., Shabani, E. and Molaei, M. (2015) Microwave Synthesis of Oleylamine-Capped Ag Nanoparticles in Aqueous Solution. Materials Science, 21, 182-186.
https://doi.org/10.5755/j01.ms.21.2.6480
[65]  Ebrahimi, M., Zakery, A., Karimipour, M. and Molaei, M. (2016) Nonlinear Optical Properties and Optical Limiting Measurements of Graphene Oxide Ag@TiO2 Compounds. Optical Materials, 57, 146-152.
https://doi.org/10.1016/j.optmat.2016.04.039
[66]  Karimipour, M., Mostoufirad, S., Molaei, M., Nikabadi, H.R. and Nesheli, A.G. (2016) Free Reducing Agent, One Pot, and Two Steps Synthesis of Ag@SiO2 Core-Shells Using Microwave Irradiation. Journal of Nano- and Electronic Physics, 8, Article No. 03020.
https://doi.org/10.21272/jnep.8(3).03020
[67]  Alfano, B., Polichetti, T., Mauriello, M., Miglietta, M.L., Ricciardella, F., Massera, E. and Francia, G.D. (2016) Modulating the Sensing Properties of Graphene through an Eco-Friendly Metal-Decoration Process. Sensors and Actuators B: Chemical, 222, 1032-1042.
https://doi.org/10.1016/j.snb.2015.09.008
[68]  Miglietta, M.L., Alfano, B., Polichetti, T., Massera, E., Schiattarella, C. and Francia, G.D. (2018) Effective Tuning of Silver Decorated Graphene Sensing Properties by Adjusting the Ag NPs Coverage Density. Sensors: Proceedings of the 3rd National Conference on Sensors, Rome, 23-25 February 2016, 82-89.
[69]  Liu, F.K., Huang, P.W., Chang, Y.C., Ko, C.J., Ko, F.H. and Chu, T.C. (2005) Formation of Silver Nanorods by Microwave Heating in the Presence of Gold Seeds. Journal of Crystal Growth, 273, 439-445.
https://doi.org/10.1016/j.jcrysgro.2004.09.043
[70]  Blosi, M., Albonetti, S., Gatti, F., Dondi, M., Migliori, A., Ortolani, L., Morandi, V. and Baldi, G. (2010) Au, Ag and Au-Ag Nanoparticles: Microwave-Assisted Synthesis in Water and Applications in Ceramic and Catalysis. Nanotech, 1, 352-355.
[71]  Rai, P., Majhi, S.M., Yu, Y.T. and Lee, J.H. (2015) Synthesis of Plasmonic Ag@SnO2 Core-Shell Nanoreactors for Xylene Detection. Royal Society of Chemistry, 5, 17653-17659.
https://doi.org/10.1039/C4RA13971B
[72]  Ohrngren, P., Fardost, A., Russo, F., Schanche, J.S., Fagrell, M. and Larhed, M. (2012) Evaluation of a Nonresonant Microwave Applicator for Continuous-Flow Chemistry Applications. American Chemical Society, 16, 1053-1063.
https://doi.org/10.1021/op300003b
[73]  Kundu, P., Nethravathi, C., Deshpande, P.A., Rajamathi, M., Madras, G. and Ravishankar, N. (2011) Ultrafast Microwave-Assisted Route to Surfactant-Free Ultrafine Pt Nanoparticles on Graphene: Synergistic Co-Reduction Mechanism and High Catalytic Activity. Chemistry of Materials, 23, 2772-2780.
https://doi.org/10.1021/cm200329a
[74]  Pal, J., Deb, M.K., Deshmukh, D.K. and Sen, B.K. (2014) Microwave-Assisted Synthesis of Platinum Nanoparticles and Their Catalytic Degradation of Methyl Violet in Aqueous Solution. Applied Nanoscience, 4, 61-65.
https://doi.org/10.1007/s13204-012-0170-0
[75]  Wojnicki, M., Luty-Błocho, M., Kwolek, P., Gajewska, M., Socha, R.P., Pędzich, Z., Csapó, E. and Hessel, V. (2021) The Influence of Dielectric Permittivity of Water on the Shape of PtNPs Synthesized in High-Pressure High-Temperature Microwave Reactor. Scientific Reports, 11, Article No. 4851.
https://doi.org/10.1038/s41598-021-84388-2
[76]  Bayazit, M.K., Yue, J., Cao, E., Gavriilidis, A. and Tang, J. (2016) Controllable Synthesis of Gold Nanoparticles in Aqueous Solution by Microwave Assisted Flow Chemistry. ACS Sustainable Chemistry & Engineering, 4, 6435-6442.
https://doi.org/10.1021/acssuschemeng.6b01149
[77]  Nadagouda, M.N. and Varma, R.S. (2007) Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties. Crystal Growth & Design, 8, 291-295.
[78]  Yasmin, A., Ramesh, K. and Rajeshkumar, S. (2014) Optimization and Stabilization of Gold Nanoparticles by Using Herbal Plant Extract with Microwave Heating. Nano Convergence, 1, Article No. 12.
https://doi.org/10.1186/s40580-014-0012-8
[79]  Bhosale, M.A., Chenna, D.R., Ahire, J.P. and Bhanage, B.M. (2015) Morphological Study of Microwave-Assisted Facile Synthesis of Gold Nanoflowers/Nanoparticles in Aqueous Medium and Their Catalytic Application for Reduction of p-Nitrophenol to p-Aminophenol. Royal Society of Chemistry Advances, 5, 52817-52823.
https://doi.org/10.1039/C5RA05731K
[80]  Ngo, V.K.T., Nguyen, H.P.U., Huynh, T.P., Tran, N.N.P., Lam, Q.V. and Huynh, T.D. (2015) Preparation of Gold Nanoparticles by Microwave Heating and Application of Spectroscopy to Study Conjugate of Gold Nanoparticles with Antibody E. coli O157:H7. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, Article ID: 035015.
https://doi.org/10.1088/2043-6262/6/3/035015
[81]  Ngo, V.K.T., Nguyen, H.P.U., Huynh, T.P. and Lam, Q.V. (2016) A Low Cost Technique for Synthesis of Gold Nanoparticles Using Microwave Heating and Its Application in Signal Amplification for Detecting Escherichia coli O157:H7 Bacteria. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, Article ID: 035016.
https://doi.org/10.1088/2043-6262/7/3/035016
[82]  Shah, K.W. and Zheng, L. (2019) Microwave-Assisted Synthesis of Hexagonal Gold Nanoparticles Reduced by Organosilane (3-Mercaptopropyl)trimethoxysilane. Materials, 12, Article No. 11.
https://doi.org/10.3390/ma12101680
[83]  Putri, S.E., Pratiwi, D.E. and Side, S. (2021) The Effect of Microwave Irradiation on Synthesis of Gold Nanoparticles Using Ethanol Extract of White Bol Guava Leaves. Journal of Physics: Conference Series, 1752, Article ID: 012058.
https://doi.org/10.1088/1742-6596/1752/1/012058
[84]  Marinoiu, A., Andrei, R., Vagner, I., Niculescu, V., Bucra, F., Constantinescu, M. and Carcadea, E. (2020) One Step Synthesis of Au Nanoparticles Supported on Graphene Oxide Using an Eco-Friendly Microwave-Assisted Process. Materials Science, 26, 249-254.
https://doi.org/10.5755/j01.ms.26.3.21857
[85]  Min, G.I., Han, S.J. and Shin, D.M. (2005) Inverter Circuit of Microwave Oven. US Patent 6,936,803 B2. (Issued August 30, 2005).
[86]  El-Naggar, M.E., Shaheen, T.I., Fouda, M.M.G. and Hebeish, A.A. (2016) Eco-Friendly Microwave-Assisted Green and Rapid Synthesis of Well-Stabilized Gold and Core-Shell Silver-Gold Nanoparticles. Carbohydrate Polymers, 20, 1128-1136.
https://doi.org/10.1016/j.carbpol.2015.10.003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133