全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2023 

基于弹性和复杂网络模型的内向整流型钾通道Kir3.2的动力学及关键位点研究
Study on the Kinetics and Key Sites of Inward Rectifier Potassium Channel Kir3.2 Based on the Elastic Network and Complex Network Models

DOI: 10.12677/BIPHY.2023.114006, PP. 65-72

Keywords: 内向整流型钾通道Kir3.2,高斯网络模型,复杂网络模型,关键残基
Inward Rectifier Potassium Channel Kir3.2
, Gaussian Network Model, Complex Network Model, Key Residues

Full-Text   Cite this paper   Add to My Lib

Abstract:

内向整流型钾通道蛋白Kir3.2能够调节钾离子的跨膜流动,具有重要的生理功能。由于其与神经和心肌系统的疾病相关,因此是一个重要的药物靶点。为研究该通道的动力学和功能性关键位点,我们首先利用高斯网络模型(GNM)对该通道进行建模,分析其结构的柔性,及各功能区域间的运动相关性;然后,构建运动相关性加权的复杂网络模型,通过依次敲除节点获得网络特征路径长度的变化来识别关键位点。结果发现,GNM重现了通道各区域的柔性;界面螺旋、跨膜螺旋和CTD区域间存在显著的运动正相关,这促进了通道与配体的结合和结构的稳定;所识别的关键残基对通道的激活、结构的稳定和变构信号交流起重要作用。本工作有助于加强对Kir3.2通道工作机制的理解,所识别的功能位点可为药物设计提供有价值的信息。
The inward rectifier potassium channel Kir3.2 can regulate the flow of potassium ions across the cell membrane, playing important physiological functions. Due to its association with diseases of the nervous and myocardial systems, it is an important target for drug design. To study its kinetics and functional key sites, we first construct its GNM model, analyze the structural flexibility and the mo-tion correlations between different functional regions. Then, the motion correlation-weighted com-plex network model is constructed, and the key sites are identified in terms of the changes of char-acteristic path lengths upon the nodes knocked one by one. The results found that the GNM model reproduces the flexibilities of different functional regions; evident positive correlations exist among the interfacial helices, transmembrane helices and CTD regions, which promotes channel-ligand binding and structural stability; the identified key residues play an important role in channel acti-vation, structural stability and signal communication. This work helps to enhance the understand-ing of Kir3.2 channel’s working mechanism, and the identified key sites can provide valuable in-formation for drug design.

References

[1]  Whorton, M.R. and Mackinnon, R. (2011) Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium. Cell, 147, 199-208.
https://doi.org/10.1016/j.cell.2011.07.046
[2]  Hibino, H., Inanobe, A., Furutani, K., et al. (2010) Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles. Physi-ological Reviews, 90, 291-366.
https://doi.org/10.1152/physrev.00021.2009
[3]  Choi, M., Scholl, U.I., Yue, P., et al. (2011) K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension. Science, 331, 768-772.
https://doi.org/10.1126/science.1198785
[4]  Mathiharan, Y.K., Glaaser, I.W., Zhao, Y., et al. (2021) Structural Insights into GIRK2 Channel Modulation by Cholesterol and PIP(2). Cell Reports, 36, Article ID: 109619.
https://doi.org/10.1016/j.celrep.2021.109619
[5]  Jiang, Y., Lee, A., Chen, J., et al. (2002) The Open Pore Conformation of Potassium Channels. Nature, 417, 523-526.
https://doi.org/10.1038/417523a
[6]  Nishida, M., Cadene, M., Chait, B.T., et al. (2007) Crystal Structure of a Kir3.1-Prokaryotic Kir Channel Chimera. EMBO Journal, 26, 4005-4015.
https://doi.org/10.1038/sj.emboj.7601828
[7]  Luscher, C. and Slesinger, P.A. (2010) Emerging Roles for G Pro-tein-Gated Inwardly Rectifying Potassium (GIRK) Channels in Health and Disease. Nature Reviews Neuroscience, 11, 301-315.
https://doi.org/10.1038/nrn2834
[8]  Rifkin, R.A., Moss, S.J. and Slesinger, P.A. (2017) G Protein-Gated Potassium Channels: A Link to Drug Addiction. Trends in Pharmacological Sciences, 38, 378-392.
https://doi.org/10.1016/j.tips.2017.01.007
[9]  Huang, C.L., Feng, S. and Hilgemann, D.W. (1998) Direct Activation of Inward Rectifier Potassium Channels by PIP2 and Its Stabilization by Gbetagamma. Nature, 391, 803-806.
https://doi.org/10.1038/35882
[10]  Sui, J.L., Petit-Jacques, J. and Logothetis, D.E. (1998) Activation of the Atrial KACh Channel by the Betagamma Subunits of G Proteins or Intracellular Na+ Ions Depends on the Presence of Phosphatidylinositol Phosphates. Proceedings of the National Academy of Sciences of the United States of America, 95, 1307-1312.
https://doi.org/10.1073/pnas.95.3.1307
[11]  Bernsteiner, H., Zangerl-Plessl, E., Chen, X., et al. (2019) Conduction through a Narrow Inward-Rectifier K+ Channel Pore. Journal of General Physiology, 151, 1231-1246.
https://doi.org/10.1085/jgp.201912359
[12]  Yan, W., Zhou, J., Sun, M., et al. (2014) The Construction of an Amino Acid Network for Understanding Protein Structure and Function. Amino Acids, 46, 1419-1439.
https://doi.org/10.1007/s00726-014-1710-6
[13]  Zhou, J., Yan, W., Hu, G., et al. (2016) Amino Acid Network for Pre-diction of Catalytic Residues in Enzymes: A Comparison Survey. Current Protein & Peptide Science, 17, 41-51.
https://doi.org/10.2174/1389203716666150923105312
[14]  Sethi, A., Eargle, J., Black, A.A., et al. (2009) Dynamical Networks in tRNA: Protein Complexes. Proceedings of the National Academy of Sciences of the United States of America, 106, 6620-6625.
https://doi.org/10.1073/pnas.0810961106
[15]  Shao, Q., Gong, W. and Li, C. (2020) A Study on Allosteric Communica-tion in U1A-snRNA Binding Interactions: Network Analysis Combined with Molecular Dynamics Data. Biophysical Chemistry, 264, Article ID: 106393.
https://doi.org/10.1016/j.bpc.2020.106393
[16]  Burley, S.K., Bhikadiya, C., Bi, C., et al. (2021) RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Research, 49, D437-D451.
https://doi.org/10.1093/nar/gkaa1038
[17]  Bahar, I., Atilgan, A.R. and Erman, B. (1997) Direct Evaluation of Thermal Fluctuations in Proteins Using a Single-Parameter Harmonic Potential. Folding & Design, 2, 173-181.
https://doi.org/10.1016/S1359-0278(97)00024-2
[18]  Di Paola, L., De Ruvo, M., Paci, P., et al. (2013) Protein Contact Networks: An Emerging Paradigm in Chemistry. Chemical Reviews, 113, 1598-1613.
https://doi.org/10.1021/cr3002356
[19]  Bahar, I., Atilgan, A.R., Demirel, M.C., et al. (1998) Vibrational Dynamics of Folded Proteins: Significance of Slow and Fast Motions in Relation to Function and Stability. Physical Review Letters, 80, 2733-2736.
https://doi.org/10.1103/PhysRevLett.80.2733
[20]  Tao, X., Avalos, J.L., Chen, J., et al. (2009) Crystal Structure of the Eukaryotic Strong Inward-Rectifier K+ Channel Kir2.2 at 3.1 A Resolution. Science, 326, 1668-1674.
https://doi.org/10.1126/science.1180310
[21]  Niu, Y., Tao, X., Touhara, K.K., et al. (2020) Cryo-EM Analysis of PIP(2) Regulation in Mammalian GIRK Channels. Elife, 9, e60552.
https://doi.org/10.7554/eLife.60552

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413