全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li+), Sodium (Na and Na+) and Potassium (K and K+)

DOI: 10.4236/mnsms.2024.141002, PP. 39-57

Keywords: Molecular Dynamics, Diffusion Coefficients, Activation Energy, Lithium, Alkali Metals, MEAM Potential

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied; with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship DLi > DNa > Dk for the multiplicity 6*6*6, while for the activation energy the order is reversed.

References

[1]  John Wiley & Sons (2015) Energy Science & Engineering. The Society of Chemical Industry Ltd., London.
[2]  El Idi, M.M., Karkri, M., Tankari, M.A., Larouci, C., Azib, T., et al. (2020) Caractérisation du comportement thermique des batteries Li-ion en vue d’une gestion optimale passive. Congrès Annuel de la Société Française de Thermique, Belfort, France.
[3]  Ianniciello, L., Biwole, P.H. and Achard, P. (2017) Gestion thermique des batteries Li-ion par l’utilisation de matériaux à changement de phase et d’air en convection forcée. Congrès français de thermique Thermique mer et océans, Marseille, France.
[4]  Bancelin, M. (2012) Mise au point et étude du comportement d’un séparateur innovant pour batterie lithium-ion à électrode négative à conversion. Thèse de doctorat en Sciences. Chimie des matériaux. Sciences des matériaux
[5]  Duclos, L. (2016) Vers l’éco-conception des piles à combustible: Développement d’un procédé de recyclage des catalyseurs des systèmes de PEMFC à base de platinepar. Thèse de doctorat en Mécanique des fluides, procédés, énergétique, Soutenue à l’Université Grenoble Alpes (ComUE).
[6]  Jiri, B., Pavel, R. and Mohamed, K. (2007) Recyclage des dechets d’extraction et de traitement des matieres minerales-exemple du recyclage des dechets d’exploitation des minerais d’etain et de tungstene.
https://www.researchgate.net/publication/281095058_RECYCLAGE_DES_DECHETS_D'EXTRACTION_ET_DE_TRAITEMENT_DES_MATIERES_MINERALES_-EXEMPLE_DU_RECYCLAGE_DES_DECHETS_D'EXPLOITATION_DES_MINERAIS_D'ETAIN_ET_DE_TUNGSTENE
[7]  Chipot, C. (2002) Les methodes numeriques de la dynamique moleculaire, Equipe de chimie et & biochimie theoriques, Unite Mixte de Recherche CNRS/UHP 7565. Institut Nanceien de Chimie Moleculaire, Universite Henri Poincare, Vandœuvre-l’es-Nancy, France.
[8]  Jacques, T. (2004) L’algorithme de Newton-Hooke.
https://www.researchgate.net/publication/328304992_L'algorithme_de_Newton-Hooke
[9]  Owen, D.R.J., Wriggers, P. and Zohdi, T.I. (2019) Time Integration Errors and Energy Conservation Properties of the Stormer Verlet Method Applied to Mpm.
https://upcommons.upc.edu/bitstream/handle/2117/186810/Particles_2019-50-Time%20integration%20errors.pdf
[10]  Grønbech-Jensen, N. and Farago, O. (2013) A Simple and Effective Verlet-Type Algorithm for Simulating Langevin Dynamics. Molecular Physics, 111, 983-991.
[11]  Lee, B.-J., Baskes, M.I., Hanchul, K. and Yang, K.C. (2001) Second Nearest-Neighbor Modified Embedded Atom Method Potentials for BCC Transition Metal. Physical Review B, 64, 184102.
https://doi.org/10.1103/PhysRevB.64.184102
[12]  Jelinek, B., Groh, S., Horstemeyer, M.F., Houze, J., Kim, S.G., Wagner, G.J., Moitra, A. and Baskes, M.I. (2012) MEAM Potentials for Al, Si, Mg, Cu, and Fe Alloys. Physical Review B, 85, 245102.
https://doi.org/10.1103/PhysRevB.85.245102
[13]  Laforgue-Kantzer, D., Laforgue, A. and Khanh, T.C. (1972) Sens physique de l’énergie d’activation de conductibilité. Electrochimica Acta, 17, 151-159.
https://doi.org/10.1016/0013-4686(72)85016-3
[14]  Aghfir, A., Akkad, S., Rhazi, M., Kane, C.S.E. and Kouhila, M. (2008) Détermination du coefficient de diffusion et de l’énergie d’activation de la menthe lors d’un séchage conductif en régime continu. Revue des Energies Renouvelables, 11, 385-394.
[15]  Goldberg, I.B. and Weger, M. (1972) The Electronic Band Structure of v3ga and v3si. Journal de Physique Colloques, 33, C3-223-C3-233.
https://doi.org/10.1051/jphyscol:1972333
[16]  Conan, A. and Goureaux, G. (1973) Calcul de la largeur de bande et de l’énergie d’échange du quasi-electron dans les métaux simples. Physica, 70, 165-174.
https://doi.org/10.1016/0031-8914(73)90286-3

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413