全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Method of Analytical Resolution of the Navier-Stokes Equations

DOI: 10.4236/ojfd.2023.135017, PP. 226-231

Keywords: Navier Stokes, Differential Equation, Fluids Mechanics

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we present a method for solving the Navier-Stokes equations. They started by finding an analytical solution of the nonlinear convective term \"\" . They solved the Navier Stokes equations as a differential equation. Finally they made a numerical and experimental verification which shows that the two solutions converge, after having found the analytical solution. Underlying principles study, those various phenomena in universe are interconnected logic for the development of new technologies as an example: news engines, applied fluids mechanics. This study’s applications are exceptionally wide such as External aerodynamics: airplane, glider, missile, launcher, space probe, automobile, flying insects, buildings and bridges; Hydraulics: pipes, open channels, waves, rivers, blood circulation; meteodynamics: meteorology, climatology.

References

[1]  Kundu, P.K., Cohen, I.M. and Dowling, D.R. (2016) Fluid Mechanics. 6th Edition, Elsevier, Inc., Amsterdam.
[2]  Schlichting, H. (Deceased) and Gersten, K. (2017) Boundary-Layer Theory. 9th Edition, Springer-Verlag, Berlin Heidelberg.
[3]  Lions, P.L. (1996) Mathematical Topics in Fluid Mechanics: Incompressible Models. Clarendon Press, Oxford, 252.
[4]  Navier, C.L. (1827) Mémoire sur les lois du mouvement des fluids. Mémoire de l’Academie des Sciences de l’Institut des Sciences, Paris.
[5]  Muller, B. (1998) Low Mach Number Asymptotics of the Navier-Stokes Equations. Journal of Engineering Mathematics, 34, 97-109.
https://doi.org/10.1007/978-94-017-1564-5_6
[6]  Brenner, H. (2005) Navier-Stokes Revisited. Phyisca A, 394, 60-132.
https://doi.org/10.1016/j.physa.2004.10.034
[7]  White’s Fluid Mechanics (2016) Fluid Mechanics. 8th Edition, McGraw-Hill Education, New York, US.
[8]  Zhang, E. (2009) Asymmetric Tensor Analysis for Flow Visualization. IEEE Transactions on Visualzation and Computer Graphics, 15, 106-122.
[9]  Fureby, C. (2012) A Useful Tool for Engineering Fluid Dynamics. 18th Aus-tralasian Fluid Mechanics Conference, Launceston, Australia.
[10]  Witherden, F.D. and Jameson, A. (2017) Future Directions of Computational Fluid Dynamics. 23rd AIAA Computational Fluid Dynamics Conference, Denver, Colorado, 5-9 June 2017, AIAA 2017-3791.
https://doi.org/10.2514/6.2017-3791
[11]  Bonnet, A. and Luneau, J. (2016) Aérodynamique: Théories de la dynamique des fluids. Editions Cépaduès.
[12]  Drazin, P. and Riley, N. (2006) The Navier-Stokes Equations. London Mathematical Society, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511526459
[13]  Rosenblatt, A. (1935) Solutions exactes des équations du mouvement des liquides visqueux. Mémorial des sciences Mathématiques, 72, 72 p.
[14]  Schlichting, H. (2017) Boundary Layer Theory. McGraw Hill, New York.
https://doi.org/10.1007/978-3-662-52919-5
[15]  Penner, S.S. and Olfe, D.B. (1968) Radiation and Reentry. Academic Press, Cambridge, USA.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413