全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Comparative Analysis of CRISPR Screening Technologies

DOI: 10.4236/ojgen.2023.134008, PP. 115-124

Keywords: CRISPR, CRISPR-Cas9, Genome Engineering, sgRNA, Genetic Screen

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper offers a general review and comparative analysis of various types of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies. It evaluates the strengths and weaknesses of these technologies to identify the optimal approach for conducting genetic screens. Through an extensive literature review, this paper examines CRISPR nuclease, CRISPR activation (CRISPRa), and CRISPR interference (CRISPRi) screens. This study concludes that CRISPRa and CRISPRi are more advantageous due to their use of deactivated Cas9 proteins that only over-express or deactivate genes rather than irreversibly breaking genes like CRISPRn. Notably, CRISPRa is unique in its ability to over-express genes, while the other two technologies deactivate genes. Future studies may focus on inducing multiple mutations simultaneously—both gain-of-function and gene knockout—to carry out a more complete screen that can test the combinatorial effect of genes. Likewise, targeting both exons and introns can offer a more thorough understanding of a specific phenotype.

References

[1]  Boettcher, M. and McManus, M.T. (2015) Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 58, 575-585.
https://doi.org/10.1016/j.molcel.2015.04.028
[2]  Cui, Y., Xu, J., Cheng, M., Liao, X. and Peng, S. (2018) Review of CRISPR/Cas9 sgRNA Design Tools. Interdisciplinary Sciences: Computational Life Sciences, 10, 455-465.
https://doi.org/10.1007/s12539-018-0298-z
[3]  Jiang, F. and Doudna, J.A. (2017) CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505-529.
https://doi.org/10.1146/annurev-biophys-062215-010822
[4]  Chen, S., Sanjana, N.E., Zheng, K., Shalem, O., Lee, K., Shi, X., et al. (2015) Genome-Wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell, 160, 1246-1260.
https://doi.org/10.1016/j.cell.2015.02.038
[5]  Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., et al. (2014) Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343, 84-87.
https://doi.org/10.1126/science.1247005
[6]  Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., et al. (2015). Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex. Nature, 517, 583-588.
https://doi.org/10.1038/nature14136
[7]  Wangensteen, K.J., Wang, Y.J., Dou, Z., Wang, A.W., Mosleh-Shirazi, E., Horlbeck, M.A., et al. (2018). Combinatorial Genetics in Liver Repopulation and Carcinogenesis with a in Vivo CRISPR Activation Platform. Hepatology, 68, 663-676.
https://doi.org/10.1002/hep.29626
[8]  Yang, J., Rajan, S.S., Friedrich, M.J., Lan, G., Zou, X., Ponstingl, H., et al. (2019) Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming. Stem Cell Reports, 12, 757-771.
https://doi.org/10.1016/j.stemcr.2019.02.010
[9]  Larson, M.H., Gilbert, L.A., Wang, X., Lim, W.A., Weissman, J.S. and Qi, L.S. (2013) CRISPR Interference (CRISPRi) for Sequence-Specific Control of Gene Expression. Nature Protocols, 8, 2180-2196.
https://doi.org/10.1038/nprot.2013.132
[10]  Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., et al. (2013) CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 154, 442-451.
https://doi.org/10.1016/j.cell.2013.06.044
[11]  Ahmed, M., Soares, F., Xia, J.H., Yang, Y., Li, J., Guo, H., et al. (2021) CRISPRi Screens Reveal a DNA Methylation-Mediated 3D Genome Dependent Causal Mechanism in Prostate Cancer. Nature Communications, 12, 1781.
https://doi.org/10.1038/s41467-021-21867-0
[12]  Borys, S.M. and Younger, S.T. (2020) Identification of Functional Regulatory Elements in the Human Genome Using Pooled CRISPR Screens. BMC Genomics, 21, 1-15.
https://doi.org/10.1186/s12864-020-6497-0
[13]  Meier, J., Couillard-Després, S., Jacomy, H., Gravel, C. and Julien, J.P. (1999) Extra Neurofilament NF-L Subunits Rescue Motor Neuron Disease Caused by Overexpression of the Human NF-H Gene in Mice. Journal of Neuropathology and Experimental Neurology, 58, 1099-1110.
https://doi.org/10.1097/00005072-199910000-00009

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413