全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高原高铁长大隧道列车空气阻力特征研究
Research on Tunnel Air Drag Characteristics of High-Speed Trains in Long Tunnel of Plateau Railway

DOI: 10.12677/IJM.2023.124013, PP. 125-134

Keywords: 大坡道长大隧道,空气阻力,一维流动模型,海拔高度
Long Tunnel with Large Slope
, Air Drag, One-Dimensional Flow Model, Altitude

Full-Text   Cite this paper   Add to My Lib

Abstract:

列车通过隧道时的空气阻力比明线运行时的阻力大得多,且受到列车速度的严重影响,列车在高海拔大坡道长大隧道运行时,会承受海拔高度的持续性变化带来的阻力影响,为分析高原高铁长大隧道列车空气阻力特征,本文采用一维可压缩非定常不等熵流动模型,考虑了隧道海拔和坡度的影响,建立了高海拔、大坡度工况下的空气阻力计算方法,在论证了研究方法正确性的基础上,分析了单列车通过和两列车中央等速交会工况下的空气阻力的形成机理,研究了海拔高度对空气阻力的影响特性。研究结果表明:列车进入隧道,冲击原本静止的空气场,同时诱发隧道压力波,致使空气阻力急剧增加,而后受到压力波的影响呈现出特定变化规律,与单列车通过隧道不同的是,列车交会过程中,阻力和压力会出现剧烈的降低和增加;空气阻力随着海拔高度的增加,呈现线性降低的趋势,隧道平均空气阻力因子随着海拔高度的增加,呈现出拟线性增加的趋势。本文的研究成果可为列车通过大坡道长大隧道时,列车的牵引功率配比和阻力预测提供基础数据。
The air drag of trains passing through tunnels is much greater than that of trains running on open lines, and is seriously affected by train speed. Trains running in long tunnels with high altitude and large slopes will bear the impact of continuous changes in altitude. To analyze the air drag characteristics of trains in long tunnels with high altitude, based on the one-dimensional unsteady compressible non-homentropic flow mode, considering the influence of elevation and slope of the tunnel, a calculation method of air drag under the condition of high altitude and large slope is established. On the basis of demonstrating the correctness of the research method, the formation mechanism of air drag under the condition of single train passing and two trains intersecting at the same speed is analyzed, and the influence characteristics of altitude on air drag are studied. The research results show that: when a train enters the tunnel, it impacts the originally stationary air field and induces tunnel pressure waves, resulting in a sharp increase in air drag, and then presents a specific change rule under the influence of pressure waves. Different from a single train passing through the tunnel, the drag and pressure will dramatically decrease and increase during the process of train intersection. The air drag decreases linearly with the increase of altitude, and the tunnel average air drag factor increases quasi-linearly with the increase of altitude. The research results of this paper can provide basic data for the traction power ratio and drag prediction of high-speed trains when trains pass through long tunnel with large slope.

References

[1]  赵有明, 马伟斌, 程爱君, 张千里. 高速铁路隧道气动效应[M]. 北京: 中国铁道出版社, 2012.
[2]  田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2006.
[3]  国家铁路局. TB10621-2014 高速铁路设计规范[S]. 北京: 中国铁道出版社, 2014.
[4]  高翔, 周毅, 贾冰, 等. 动车组隧道附加阻力试验研究[J]. 铁道机车车辆, 2018, 38(3): 44-46.
[5]  范磊. 铁路隧道空气附加阻力及坡度折减系数研究[J]. 地下空间与工程学报, 2016, 12(3): 795-802.
[6]  Maedu, T., 陈丽娟. 根据隧道中的压力上升估算日本新干线列车的空气动力阻力[J]. 隧道译丛, 1992(5): 9-18.
[7]  井門敦志. 鉄道車両の空気抵抗低減量の評価方法[J]. 日本機械学会論文集, 2003, 69(685): 53-59.
[8]  梅元贵. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
[9]  Hara, T. (1961) Aerodynamic Force Acting on a High Speed Train at Tunnel Entrance. The Japan Society of Mechanical Engineers, 4, 547-553.
https://doi.org/10.1299/jsme1958.4.547
[10]  Hara, T. (1964) Method of Measuring the Aerodynamic Drag of Trains. The Japan Society of Mechanical Engineers, 8, 390-396.
https://doi.org/10.1299/kikai1938.30.1339
[11]  Vardy, A.E. (1966) Aerodynamic Drag on Trains in Tunnels Part 1: Synthesis and Definitions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 210, 29-38.
https://doi.org/10.1243/PIME_PROC_1996_210_324_02
[12]  Vardy, A.E. (1966) Aerodynamic Drag on Trains in Tunnels Part 2: Synthesis and Definitions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 210, 39-49.
https://doi.org/10.1243/PIME_PROC_1996_210_325_02
[13]  康熊, 曾宇清, 张波. 高速列车空气阻力测量分析方法[J]. 中国铁道科学, 2012, 33(5): 54-59.
[14]  凌亮, 胡彦霖, 杨泽钰, 等. 川藏铁路特殊气象环境对动车组隧道气动阻力的影响[J]. 西南交通大学学报, 2022, 57(1): 158-165.
[15]  薛应花, 丁军君, 王利军, 等. 面向川藏铁路的机车车辆运行基本阻力研究[J]. 机车电传动, 2021(3): 67-72.
[16]  陶伟明. 列车通过隧道空气阻力研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2011.
[17]  王韦, 王建宇, 陈正林. 隧道中高速列车活塞风及空气阻力的计算[J]. 中国铁道科学, 1999(1): 11-18.
[18]  王兆祺, 赵毅山. 磁悬浮列车通过隧道时空气阻力的计算方法[J]. 同济大学学报(自然科学版), 2003, 31(10): 1183-1187.
[19]  Choi, J.K. and Kim, K.H. (2014) Effects of Nose Shape and Tunnel Cross-Sectional Area on Aerodynamic Drag of Train Traveling in Tunnels. Tunnelling and Under-ground Space Technology, 41, 62-73.
https://doi.org/10.1016/j.tust.2013.11.012
[20]  宫保贵, 孙国斌, 曹虎, 等. 基于CFD数值模拟的城轨列车隧道空气附加阻力计算影响因素研究[J]. 计算机应用与软件, 2020, 37(11): 69-72, 145.
[21]  Gawthorpe, R.G. (1979) Analysis of Train Drag in Various Conditions of Long Tunnel. In: Stephens, H.S., Ed., Aerodynamics and Ventilation of Vehicle Tunnels, British Hydromechanics Research Association, Cranfield, 257-280.
[22]  Gaillard, M.A. (1973) Aero-dynamics of Trains in Tunnels. In: Stephens, H.S., Ed., Aerodynamics and Ventilation of Vehicle Tunnels, British Hy-dromechanics Research Association, Cranfield, 33-47.
[23]  (2021) Railway applications Aerodynamics Part 5: Re-quirements and Test Procedures for Aerodynamics in Tunnels. EN14067-5: 2021.
[24]  万有财, 周新喜, 梅元贵. 高速列车通过高海拔大坡度隧道车内外压力波特性[J]. 中国铁道科学, 2023, 44(1): 167-176.
[25]  Palmero, N.M. and Vardy, A. (2014) Tunnel Gradients and Aural Health Criterion for Train Passengers. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228, 821-832.
https://doi.org/10.1177/0954409713490684
[26]  飯田雅宣, 前田達夫. トンネル内圧力変動シミュレ一シヨン[J]. 鉄道総研報告, 1990, 4(7): 59-61.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133