全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于负磁导率传输线的多模宽带天线设计
Design of Multimode and Broadband Antenna Based on Mu-Negative Transmission-Line Structure

DOI: 10.12677/JA.2023.124007, PP. 57-65

Keywords: 负磁导率传输线,多模,宽带
Mu-Negative Transmission-Line (MNG-TL)
, Multimode, Wideband

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于人工负磁导率传输线以及多模式融合技术的天线设计,实现了天线的多模、宽带性能。首先基于传统的环天线,在该环天线的二次模对应的电流零点处引入分布式电容,在不影响二次模谐振频率的情况下,基模的谐振频率移动到更高频并与二次模相融合形成一个双模谐振。同时,通过适当选择环天线尺寸及加载的电容值,在所需频段内还产生了一个零模谐振点,从而天线的零模、基模、二次模的谐振频率相互靠近并融合成一个多模谐振,形成了覆盖WIFI 5G、6E频段(5.15~5.85 GHz, 5.925~7.125 GHz)的宽带。并且在不增加天线尺寸的情况下,通过在传统环天线的中间加载一段感性枝节,产生了WIFI 2.4G (2.4~2.485 GHz)低频谐振。最终,该天线实现了WIFI 2.4G、5G和6E频段的全覆盖。
This article proposes an antenna design based on artificial Mu-negative transmission-line structure and multimode compression technology to achieve multimode and broadband performance of the antenna. Firstly, based on traditional loop antenna, distributed capacitors are introduced on the current nulls of the second mode of the loop antenna, without effecting the second resonance mode, the fundamental mode moved to higher frequency band and compressed with the second mode, generating a dual-mode resonance. At the same time, by appropriately selecting the size of the loop antenna and the value of loaded capacitances, zeroth-order resonance is generated within the re-quired frequency band, thus, the zeroth-order resonance, fundamental mode resonance, and second mode resonance of the antenna are compressed, generating a multi-mode resonance, which covers the WIFI 5G and 6E (5.15~5.85 GHz, 5.925~7.125 GHz) frequency bands. In addition, without adding additional space of the antenna, an inductive strip was loaded in the middle of the loop antenna, generating a lower resonance in WIFI 2.4G (2.4~2.485 GHz) band. Ultimately, the proposed antenna can operate in the whole WIFI 2.4G/5G/6E frequency bands simultaneously.

References

[1]  Dutta, D., Guha, D. and Kumar, C. (2023) A Concept of Advanced Design Governed by Theoretically Predicted Current Dis-tributions on the Ground Plane Beneath an Aperture-Fed Microstrip Antenna. IEEE Open Journal of Antennas and Propagation, 4, 461-471.
https://doi.org/10.1109/OJAP.2023.3267299
[2]  Wong, K.L. and Chen, Y.C. (2015) Small-Size Hybrid Loop/Open-Slot Antenna for the LTE Smartphone. IEEE Transactions on Antennas and Propagation, 63, 5837-5841.
https://doi.org/10.1109/TAP.2015.2478960
[3]  Ban, Y.L., Liu, C.L., Li, L.W., Guo, J. and Kang, Y. (2013) Small-Size Coupled-Fed Antenna with Two Printed Distributed Inductors for Seven-Band WWAN/LTE Mobile Handset. IEEE Transac-tions on Antennas and Propagation, 61, 5780-5784.
https://doi.org/10.1109/TAP.2013.2279427
[4]  Ren, A., Yu, H., Yang, L., Huang, Z., Zhang, Z. and Liu, Y. (2023) A Broadband MIMO Antenna Based on Multimodes for 5G Smartphone Applications. IEEE Antennas and Wireless Propagation Letters, 22, 1642-1646.
https://doi.org/10.1109/LAWP.2023.3257182
[5]  Xu, Z., Zhou, Q., Ban, Y. and Ang, S.S. (2018) Hepta-Band Cou-pled-Fed Loop Antenna for LTE/WWAN Unbroken Metal-Rimmed Smartphone Applications. IEEE Antennas and Wireless Propagation Letters, 17, 311-314.
https://doi.org/10.1109/LAWP.2017.2787863
[6]  Shahgholi, A., Moradi, G. and Abdipour, A. (2020) Low-Profile Fre-quency-Reconfigurable LTE-CRLH Antenna for Smartphones. IEEE Access, 8, 26487-26494.
https://doi.org/10.1109/ACCESS.2020.2971518
[7]  Wong, K. and Tsai, C. (2016) IFA-Based Metal-Frame Antenna without Ground Clearance for the LTE/WWAN Operation in the Metal-Casing Tablet Computer. IEEE Transactions on Anten-nas and Propagation, 64, 53-60.
https://doi.org/10.1109/TAP.2015.2503420
[8]  Xu, Z.-Q., Sun, Y., Zhou, Q.-Q., Ban, Y.-L., Li, Y.-X. and Ang, S.S. (2017) Reconfigurable MIMO Antenna for Integrated-Metal-Rimmed Smartphone Applications. IEEE Access, 5, 21223-21228.
https://doi.org/10.1109/ACCESS.2017.2757949
[9]  Wei, K., Zhang, Z., Feng, Z. and Iskander, M.F. (2013) A Wide-band MNG-TL Dipole Antenna with Stable Radiation Patterns. IEEE Transactions on Antennas and Propagation, 61, 2418-2424.
https://doi.org/10.1109/TAP.2013.2241717
[10]  Wei, K., Zhang, Z., Zheng, F. and Iskander, M.F. (2012) An MNG-TL Loop Antenna Array with Horizontally Polarized Omnidirectional Patterns. IEEE Transactions on Antennas and Propagation, 60, 2702-2710.
https://doi.org/10.1109/TAP.2012.2194643
[11]  Lee, S.W. and Lee, J.H. (2010) Electrically Small MNG ZOR Antenna with Multilayered Conductor. IEEE Antennas and Wireless Propagation Letters, 9, 724-727.
https://doi.org/10.1109/LAWP.2010.2057403
[12]  Bilotti, F., Alù, A. and Vegni, L. (2008) Design of Miniaturized Met-amaterial Patch Antennas with μ-Negative Loading. IEEE Transactions on Antennas and Propagation, 56, 1640-1647.
https://doi.org/10.1109/TAP.2008.923307
[13]  Wang, Z., Ning, Y. and Dong, Y. (2022) Hybrid Metamaterial-TL-Based, Low-Profile, Dual-Polarized Omnidirectional Antenna for 5G Indoor Application. IEEE Transactions on Antennas and Propa-gation, 70, 2561-2570.
https://doi.org/10.1109/TAP.2021.3137242
[14]  Mehdipour, A., Denidni, T.A. and Sebak, A.-R. (2013) Multi-Band Miniaturized Antenna Loaded by ZOR and CSRR Metamaterial Structures with Monopolar Radiation Pattern. IEEE Transac-tions on Antennas and Propagation, 62, 555-562.
https://doi.org/10.1109/TAP.2013.2290791
[15]  Soric, J.C., Engheta, N., Maci, S. and Alu, A. (2013) Omnidirectional Metamaterialantennas Based on ε-Near-Zero Channel Matching. IEEE Trans-actions on Antennas and Propagation, 61, 33-44.
https://doi.org/10.1109/TAP.2012.2214994
[16]  Wu, J., Ren, X., Wang, Z. and Yin, Y. (2014) Broadband Circularly Po-larized Antenna with L-shaped Strip Feeding and Shorting-Pin Loading. IEEE Antennas and Wireless Propagation Letters, 13, 1733-1736.
https://doi.org/10.1109/LAWP.2014.2354050
[17]  Li, H. and Li, Y. (2020) Mode Compression Method for Wideband Dipole Antenna by Dual-Point Capacitive Loadings. IEEE Transactions on Antennas and Propagation, 68, 6424-6428.
https://doi.org/10.1109/TAP.2020.2972642

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413