全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

ALKBH5在不同免疫环境中的调控作用
Regulation of ALKBH5 in Different Immune Environment

DOI: 10.12677/BP.2023.134025, PP. 174-186

Keywords: m6A修饰,ALKBH5,肿瘤免疫,自身免疫,ALKBH5抑制剂, ALKBH5, Tumor Immunity, Autoimmune, ALKBH5 Inhibitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

m6A修饰在转录后水平调控多种细胞过程,而RNA m6A水平受RNA去甲基化酶ALKBH5调节,维持正常的生理功能的同时也促进多种人类疾病发生发展。在这篇综述中,我们讨论了ALKBH5与免疫之间的联系以及在免疫系统和癌症中的多重作用。我们分析了ALKBH5在不同免疫环境中的调节作用,包括促进正常免疫细胞发育成熟和细胞因子释放,在多种肿瘤组织中异常表达对肿瘤免疫微环境的调节和ALKBH5失调促进自身免疫疾病发生等。在不同免疫环境中的诸多调节作用使得ALKBH5可能作为肿瘤免疫、自身免疫性疾病以及在其他与ALKBH5免疫调节相关疾病的潜在药物靶标,为开发免疫治疗药物提供理论参考。
The modification of m6A regulates various cellular processes at post-transcription level. While RNA m6A level is regulated by RNA demethylase ALKBH5, which maintains normal physiological functions and promotes the initiation and development of various human diseases. In this review, we discuss multiple roles of ALKBH5 in immune system and cancers. We summarize the regulatory effects of ALKBH5 in different immune environments, including promotion of normal immune cells maturation and cytokines release, regulation of tumor immune microenvironment in a variety of tumor tissues, and initiation of autoimmune diseases by abnormal expression of ALKBH5. Due to its various roles in different immune environments, ALKBH5 may serve as a potential drug target for tumor immunity, autoimmune diseases and other diseases related to ALKBH5, providing a theoretical basis for developing immunotherapeutic drugs.

References

[1]  Chen, X.Y., Zhang, J. and Zhu, J.S. (2019) The Role of m6A RNA Methylation in Human Cancer. Molecular Cancer, 18, Article No. 103.
https://doi.org/10.1186/s12943-019-1033-z
[2]  Qu, J., Yan, H., Hou, Y., Cao, W., Liu, Y., Zhang, E., et al. (2022) RNA Demethylase ALKBH5 in Cancer: From Mechanisms to Therapeutic Potential. Journal of Hematology & Oncology, 15, Article No. 8.
https://doi.org/10.1186/s13045-022-01224-4
[3]  Desrosiers, R., Friderici, K. and Rottman, F. (1974) Identifica-tion of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells. Proceedings of the National Acade-my of Sciences of the United States of America, 71, 3971-3975.
https://doi.org/10.1073/pnas.71.10.3971
[4]  Perry, R.P. and Kelley, D.E. (1974) Existence of Methylated Messenger RNA in Mouse L Cells. Cell, 1, 37-42.
https://doi.org/10.1016/0092-8674(74)90153-6
[5]  Liu, H., Lyu, H., Jiang, G., Chen, D., Ruan, S., Liu, S., et al. (2022) ALKBH5-Mediated m6A Demethylation of GLUT4 mRNA Promotes Glycolysis and Resistance to HER2-Targeted Therapy in Breast Cancer. Cancer Research, 82, 3974-3986.
https://doi.org/10.1158/0008-5472.CAN-22-0800
[6]  Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E. and Jaffrey, S.R. (2012) Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3’UTRs and Near Stop Codons. Cell, 149, 1635-1646.
https://doi.org/10.1016/j.cell.2012.05.003
[7]  Peng, H., Chen, B., Wei, W., Guo, S., Han, H., Yang, C., et al. (2022) N6-Methyladenosine (m6A) in 18S rRNA Promotes Fatty Acid Metabolism and Oncogenic Transformation. Na-ture Metabolism, 4, 1041-1054.
https://doi.org/10.1038/s42255-022-00622-9
[8]  Correia De Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C. and Foti, M. (2019) Deciphering miRNAs’ Action through miRNA Editing. International Journal of Molecular Sci-ences, 20, Article 6249.
https://doi.org/10.3390/ijms20246249
[9]  Li, Y., Yan, B., Wang, X., Li, Q., Kan, X., Wang, J., et al. (2021) ALKBH5-Mediated m6A Modification of LncRNA KCNQ1OT1 Triggers the Development of LSCC via Upregulation of HOXA9.
https://doi.org/10.21203/rs.3.rs-637073/v1
[10]  Yu, H. and Zhang, Z. (2021) ALKBH5-Mediated m6A Demethyl-ation of lncRNA RMRP Plays an Oncogenic Role in Lung Adenocarcinoma. Mammalian Genome, 32, 195-203.
https://doi.org/10.1007/s00335-021-09872-6
[11]  Chen, S., Zhou, L. and Wang, Y. (2020) ALKBH5-Mediated m6A Demethylation of lncRNA PVT1 Plays an Oncogenic Role in Osteosarcoma. Cancer Cell International, 20, Article No. 34.
https://doi.org/10.1186/s12935-020-1105-6
[12]  Liang, L., Zhu, Y., Li, J., Zeng, J. and Wu, L. (2022) ALKBH5-Mediated m6A Modification of circCCDC134 Facilitates Cervical Cancer Metastasis by Enhancing HIF1A Transcription. Journal of Experimental & Clinical Cancer Research, 41, Article No. 261.
https://doi.org/10.1186/s13046-022-02462-7
[13]  Zhang, L., Hou, C., Chen, C., Guo, Y., Yuan, W., Yin, D., et al. (2020) The Role of N6-Methyladenosine (m6A) Modification in the Regulation of circRNAs. Molecular Cancer, 19, Ar-ticle No. 105.
https://doi.org/10.1186/s12943-020-01224-3
[14]  Pendleton, K.E., Chen, B., Liu, K., Hunter, O.V., Xie, Y., Tu, B.P., et al. (2017) The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 169, 824-835.E14.
https://doi.org/10.1016/j.cell.2017.05.003
[15]  Han, J., Wang, J., Yang, X., Yu, H., Zhou, R., Lu, H.C., et al. (2019) METTL3 Promote Tumor Proliferation of Bladder Cancer by Accelerating pri-miR221/222 Maturation in m6A-Dependent Manner. Molecular Cancer, 18, Article No. 110.
https://doi.org/10.1186/s12943-019-1036-9
[16]  Li, T., Hu, P.S., Zuo, Z., Lin, J.F., Li, X., Wu, Q.N., et al. (2019) METTL3 Facilitates Tumor Progression via an m6A-IGF2BP2-Dependent Mechanism in Colorectal Carcinoma. Molec-ular Cancer, 18, Article No. 112.
https://doi.org/10.1186/s12943-019-1038-7
[17]  Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2014) A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nature Chemical Biology, 10, 93-95.
https://doi.org/10.1038/nchembio.1432
[18]  Wan, W., Ao, X., Chen, Q., Yu, Y., Ao, L., Xing, W., et al. (2022) METTL3/IGF2BP3 Axis Inhibits Tumor Immune Surveillance by Upregulating N6-Methyladenosine Modification of PD-L1 mRNA in Breast Cancer. Molecular Cancer, 21, Article No. 60.
https://doi.org/10.1186/s12943-021-01447-y
[19]  Zeng, C., Huang, W., Li, Y. and Weng, H. (2020) Roles of METTL3 in Cancer: Mechanisms and Therapeutic Targeting. Journal of Hematology & Oncology, 13, Article No. 117.
https://doi.org/10.1186/s13045-020-00951-w
[20]  Zhou, H., Yin, K., Zhang, Y., Tian, J. and Wang, S. (2021) The RNA m6A Writer METTL14 in Cancers: Roles, Structures, and Applications. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188609.
https://doi.org/10.1016/j.bbcan.2021.188609
[21]  Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., et al. (2014) Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase. Cell Research, 24, 177-189.
https://doi.org/10.1038/cr.2014.3
[22]  Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., et al. (2010) Crys-tal Structure of the FTO Protein Reveals Basis for Its Substrate Specificity. Nature, 464, 1205-1209.
https://doi.org/10.1038/nature08921
[23]  Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J., et al. (2014) Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-Stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 289, 17299-17311.
https://doi.org/10.1074/jbc.M114.550350
[24]  Maimaiti, A., Tuersunniyazi, A., Meng, X., Pei, Y., Ji, W., Feng, Z., et al. (2022) N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing Gene Signature as Prognos-tic Predictor and in Immune Microenvironment Characterization of Patients with Low-Grade Glioma. Frontiers in Genet-ics, 13, Article 872186.
https://doi.org/10.3389/fgene.2022.872186
[25]  Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., et al. (2018) ALKBH5-Dependent m6A Demethylation Controls Splicing and Stability of Long 3’-UTR mRNAs in Male Germ Cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E325-E333.
https://doi.org/10.1073/pnas.1717794115
[26]  Roundtree, I.A., Luo, G.Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et al. (2017) YTHDC1 Mediates Nuclear Export of N6-Methyladenosine Methylated mRNAs. eLife, 6, e31311.
https://doi.org/10.7554/eLife.31311
[27]  Chen, R.X., Chen, X., Xia, L.P., Zhang, J.X., Pan, Z.Z., Ma, X.D., et al. (2019) N6-Methyladenosine Modification of circNSUN2 Facilitates Cytoplasmic Export and Stabilizes HMGA2 to Pro-mote Colorectal Liver Metastasis. Nature Communications, 10, Article No. 4695.
https://doi.org/10.1038/s41467-019-12651-2
[28]  Li, H.B., Tong, J., Zhu, S., Batista, P.J., Duffy, E.E., Zhao, J., et al. (2017) m6A mRNA Methylation Controls T Cell Homeostasis by Targeting the IL-7/STAT5/SOCS Pathways. Na-ture, 548, 338-342.
https://doi.org/10.1038/nature23450
[29]  Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., et al. (2020) The m6A Reader YTHDF1 Promotes Ovarian Cancer Progression via Augmenting EIF3C Translation. Nucleic Acids Re-search, 48, 3816-3831.
https://doi.org/10.1093/nar/gkaa048
[30]  Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., et al. (2015) N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 161, 1388-1399.
https://doi.org/10.1016/j.cell.2015.05.014
[31]  Yu, B., Edstrom, W.C., Benach, J., Hamuro, Y., Weber, P.C., Gib-ney, B.R., et al. (2006) Crystal Structures of Catalytic Complexes of the Oxidative DNA/RNA Repair Enzyme AlkB. Nature, 439, 879-884.
https://doi.org/10.1038/nature04561
[32]  Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., et al. (2014) Crystal Structures of the Human RNA Demethylase Alkbh5 Reveal Basis for Substrate Recognition. Journal of Biologi-cal Chemistry, 289, 11571-11583.
https://doi.org/10.1074/jbc.M113.546168
[33]  Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887.
https://doi.org/10.1038/nchembio.687
[34]  Zhang, X., Wei, L.H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., et al. (2019) Structural Insights into FTO’s Catalytic Mechanism for the Demethylation of Multiple RNA Substrates. Proceedings of the National Academy of Sciences of the United States of America, 116, 2919-2924.
https://doi.org/10.1073/pnas.1820574116
[35]  Gerken, T., Girard, C.A., Tung, Y.C.L., Webby, C.J., Saudek, V., Hewitson, K.S., et al. (2007) The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 318, 1469-1472.
https://doi.org/10.1126/science.1151710
[36]  Jia, G., Yang, C.G., Yang, S., Jian, X., Yi, C., Zhou, Z., et al. (2008) Oxidative Demethylation of 3-Methylthymine and 3-Methyluracil in Single-Stranded DNA and RNA by Mouse and Human FTO. FEBS Letters, 582, 3313-3319.
https://doi.org/10.1016/j.febslet.2008.08.019
[37]  Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., et al. (2013) ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Molecular Cell, 49, 18-29.
https://doi.org/10.1016/j.molcel.2012.10.015
[38]  Baltz, A.G., Munschauer, M., Schwanh?usser, B., Vasile, A., Murakawa, Y., Schueler, M., et al. (2012) The mRNA-Bound Proteome and Its Global Occupancy Profile on Pro-tein-Coding Transcripts. Molecular Cell, 46, 674-690.
https://doi.org/10.1016/j.molcel.2012.05.021
[39]  Han, Z., Wang, X., Xu, Z., Cao, Y., Gong, R., Yu, Y., et al. (2021) ALKBH5 Regulates Cardiomyocyte Proliferation and Heart Regeneration by Demethylating the mRNA of YTHDF1. Theranostics, 11, 3000-3016.
https://doi.org/10.7150/thno.47354
[40]  Cheng, P., Han, H., Chen, F., Cheng, L., Ma, C., Huang, H., et al. (2022) Amelioration of Acute Myocardial Infarction Injury through Targeted Ferritin Nanocages Loaded with an ALKBH5 In-hibitor. Acta Biomaterialia, 140, 481-491.
https://doi.org/10.1016/j.actbio.2021.11.041
[41]  Du, T., Li, G., Yang, J. and Ma, K. (2020) RNA Demethylase Alkbh5 Is Widely Expressed in Neurons and Decreased during Brain Development. Brain Research Bulletin, 163, 150-159.
https://doi.org/10.1016/j.brainresbull.2020.07.018
[42]  Kumari, R., Dutta, R., Ranjan, P., Suleiman, Z.G., Goswami, S.K., Li, J., et al. (2022) ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Frontiers in Cardiovascular Medicine, 8, Article 817304.
https://doi.org/10.3389/fcvm.2021.817304
[43]  Liu, Y., Song, R., Zhao, L., Lu, Z., Li, Y., Zhan, X., et al. (2022) m6A Demethylase ALKBH5 Is Required for Antibacterial Innate Defense by Intrinsic Motivation of Neutrophil Migra-tion. Signal Transduction and Targeted Therapy, 7, Article No. 194.
https://doi.org/10.1038/s41392-022-01020-z
[44]  You, Y., Wen, D., Zeng, L., Lu, J., Xiao, X., Chen, Y., et al. (2022) ALKBH5/MAP3K8 Axis Regulates PD-L1+ Macrophage Infiltration and Promotes Hepatocellular Carcinoma Progression. International Journal of Biological Sciences, 18, 5001-5018.
https://doi.org/10.7150/ijbs.70149
[45]  Luo, Q., Fu, B., Zhang, L., Guo, Y., Huang, Z. and Li, J. (2020) Decreased Peripheral Blood ALKBH5 Correlates with Markers of Autoimmune Response in Systemic Lupus Erythematosus. Dis-ease Markers, 2020, Article ID: 8193895.
https://doi.org/10.1155/2020/8193895
[46]  Zhao, Y., Sun, J. and Jin, L. (2022) The N6-Methyladenosine Regula-tor ALKBH5 Mediated Stromal Cell-Macrophage Interaction via VEGF Signaling to Promote Recurrent Spontaneous Abortion: A Bioinformatic and in Vitro Study. International Journal of Molecular Sciences, 23, Article 15819.
https://doi.org/10.3390/ijms232415819
[47]  Ding, C., Xu, H., Yu, Z., Roulis, M., Qu, R., Zhou, J., et al. (2022) RNA m6A Demethylase ALKBH5 Regulates the Development of γδ T Cells. Proceedings of the National Academy of Sciences of the United States of America, 119, e2203318119.
https://doi.org/10.1073/pnas.2203318119
[48]  Wei, C., Wang, B., Peng, D., Zhang, X., Li, Z., Luo, L., et al. (2022) Pan-Cancer Analysis Shows That ALKBH5 Is a Poten-tial Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Frontiers in Immunol-ogy, 13, Article 849592.
https://doi.org/10.3389/fimmu.2022.849592
[49]  Dong, F., Qin, X., Wang, B., Li, Q., Hu, J., Cheng, X., et al. (2021) ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Research, 81, 5876-5888.
https://doi.org/10.1158/0008-5472.CAN-21-1456
[50]  Zhou, J., Zhang, X., Hu, J., Qu, R., Yu, Z., Xu, H., et al. (2021) m6A Demethylase ALKBH5 Controls CD4+ T Cell Pathogenicity and Promotes Autoimmunity. Science Advanc-es, 7, eabg0470.
https://doi.org/10.1126/sciadv.abg0470
[51]  Song, R., Zhao, J., Gao, C., Qin, Q. and Zhang, J. (2021) Inclusion of ALKBH5 as a Candidate Gene for the Susceptibility of Autoimmune Thyroid Disease. Advances in Medical Sciences, 66, 351-358.
https://doi.org/10.1016/j.advms.2021.07.006
[52]  Shulman, Z. and Stern-Ginossar, N. (2020) The RNA Modifica-tion N6-Methyladenosine as a Novel Regulator of the Immune System. Nature Immunology, 21, 501-512.
https://doi.org/10.1038/s41590-020-0650-4
[53]  Kreslavsky, T., Gleimer, M. and von Boehmer, H. (2010) αβ ver-sus γδ Lineage Choice at the First TCR-Controlled Checkpoint. Current Opinion in Immunology, 22, 185-192.
https://doi.org/10.1016/j.coi.2009.12.006
[54]  Pennington, D.J., Silva-Santos, B. and Hayday, A.C. (2005) γδ T Cell Development—Having the Strength to Get There. Current Opinion in Immunology, 17, 108-115.
https://doi.org/10.1016/j.coi.2005.01.009
[55]  Washburn, T., Schweighoffer, E., Gridley, T., Chang, D., Fowlkes, B.J., Cado, D., et al. (1997) Notch Activity Influences the αβ versus γδ T Cell Lineage Decision. Cell, 88, 833-843.
https://doi.org/10.1016/S0092-8674(00)81929-7
[56]  Bajrami, B., Zhu, H., Kwak, H.J., Mondal, S., Hou, Q., Geng, G., et al. (2016) G-CSF Maintains Controlled Neutrophil Mobilization during Acute Inflammation by Negatively Regulating CXCR2 Signaling. Journal of Experimental Medicine, 213, 1999-2018.
https://doi.org/10.1084/jem.20160393
[57]  Olson, T.S. and Ley, K. (2002) Chemokines and Chemokine Receptors in Leukocyte Trafficking. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283, R7-R28.
https://doi.org/10.1152/ajpregu.00738.2001
[58]  Zhu, S. and Lu, Y. (2020) Dexmedetomidine Suppressed the Bi-ological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5. Inflammation, 43, 2256-2263.
https://doi.org/10.1007/s10753-020-01293-y
[59]  Liu, Y., You, Y., Lu, Z., Yang, J., Li, P., Liu, L., et al. (2019) N6-Methyladenosine RNA Modification-Mediated Cellular Metabolism Rewiring Inhibits Viral Replication. Science, 365, 1171-1176.
https://doi.org/10.1126/science.aax4468
[60]  Wang, A., Tao, W., Tong, J., Gao, J., Wang, J., Qian, C., et al. (2022) m6A Modifications Regulate Intestinal Immunity and Rotavirus Infection. eLife, 11, e73628.
[61]  Barro, M. and Patton, J.T. (2005) Rotavirus Nonstructural Protein 1 Subverts Innate Immune Response by Inducing Degradation of IFN Reg-ulatory Factor 3. Proceedings of the National Academy of Sciences of the United States of America, 102, 4114-4119.
https://doi.org/10.1073/pnas.0408376102
[62]  Ding, S., Mooney, N., Li, B., Kelly, M.R., Feng, N., Loktev, A.V., et al. (2016) Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLOS Pathogens, 12, e1005929.
https://doi.org/10.1371/journal.ppat.1005929
[63]  Rubio, R.M., Depledge, D.P., Bianco, C., Thompson, L. and Mohr, I. (2018) RNA m6A Modification Enzymes Shape Innate Responses to DNA by Regulating Interferon β. Genes & Development, 32, 1472-1484.
[64]  Zhao, T., Qi, J., Liu, T., Wu, H. and Zhu, Q. (2022) N6-Methyladenosine Modification Participates in the Progression of Hepatitis B Vi-rus-Related Liver Fibrosis by Regulating Immune Cell Infiltration. Frontiers in Medicine, 9, Article 821710.
https://doi.org/10.3389/fmed.2022.821710
[65]  Kaneko, S., Kurosaki, M., Inada, K., Kirino, S., Hayakawa, Y., Yamashita, K., et al. (2021) Hepatitis B Core-Related Antigen Predicts Disease Progression and Hepatocellular Carcino-ma in Hepatitis B e Antigen-Negative Chronic Hepatitis B Patients. Journal of Gastroenterology and Hepatology, 36, 2943-2951.
https://doi.org/10.1111/jgh.15563
[66]  Chen, S., Kumar, S., Espada, C.E., Tirumuru, N., Cahill, M.P., Hu, L., et al. (2021) N6-Methyladenosine Modification of HIV-1 RNA Suppresses Type-I Interferon Induction in Dif-ferentiated Monocytic Cells and Primary Macrophages. PLOS Pathogens, 17, e1009421.
https://doi.org/10.1371/journal.ppat.1009421
[67]  Tang, W., Xu, N., Zhou, J., He, Z., Lenahan, C., Wang, C., et al. (2022) ALKBH5 Promotes PD-L1-Mediated Immune Escape through m6A Modification of ZDHHC3 in Glioma. Cell Death Discovery, 8, Article No. 497.
https://doi.org/10.1038/s41420-022-01286-w
[68]  Zhang, Z., Zhang, C., Luo, Y., Wu, P., Zhang, G., Zeng, Q., et al. (2021) m6A Regulator Expression Profile Predicts the Prognosis, Benefit of Adjuvant Chemotherapy, and Response to Anti-PD-1 Immunotherapy in Patients with Small- Cell Lung Cancer. BMC Medicine, 19, Article No. 284.
https://doi.org/10.1186/s12916-021-02148-5
[69]  Ji, H., Zhang, J., Liu, H., Li, K., Wang, Z. and Zhu, X. (2022) Comprehensive Characterization of Tumor Microenvironment and m6A RNA Methylation Regulators and Its Effects on PD-L1 and Immune Infiltrates in Cervical Cancer. Frontiers in Immunology, 13, Article 976107.
https://doi.org/10.3389/fimmu.2022.976107
[70]  Zhang, T., Sheng, P. and Jiang, Y. (2022) m6A Regulators Are Differently Expressed and Correlated with Immune Response of Pancreatic Adenocarcinoma. Journal of Cancer Re-search and Clinical Oncology, 149, 2805-2822.
https://doi.org/10.1007/s00432-022-04150-7
[71]  Guo, X., Li, K., Jiang, W., Hu, Y., Xiao, W., Huang, Y., et al. (2020) RNA Demethylase ALKBH5 Prevents Pancreatic Cancer Progression by Posttranscriptional Activation of PER1 in an m6A-YTHDF2-Dependent Manner. Molecular Cancer, 19, Article No. 91.
https://doi.org/10.1186/s12943-020-01158-w
[72]  Yan, G., An, Y., Xu, B., Wang, N., Sun, X. and Sun, M. (2021) Potential Impact of ALKBH5 and YTHDF1 on Tumor Immunity in Colon Adenocarcinoma. Frontiers in Oncology, 11, Article 670490.
https://doi.org/10.3389/fonc.2021.670490
[73]  Sharpe, B.P., Hayden, A., Manousopoulou, A., Cowie, A., Walker, R.C., Harrington, J., et al. (2022) Phosphodiesterase Type 5 Inhibitors Enhance Chemotherapy in Preclinical Models of Esophageal Adenocarcinoma by Targeting Cancer-Associated Fibroblasts. Cell Reports Medicine, 3, Article ID: 100541.
https://doi.org/10.1016/j.xcrm.2022.100541
[74]  Ji, T., Gao, X., Li, D., Huai, S., Chi, Y., An, X., et al. (2023) Identification and Validation of Signature for Prognosis and Immune Microenvironment in Gastric Cancer Based on m6A Demethylase ALKBH5. Frontiers in Oncology, 12, Article 1079402.
https://doi.org/10.3389/fonc.2022.1079402
[75]  Hu, Y., Gong, C., Li, Z., Liu, J., Chen, Y., Huang, Y., et al. (2022) Demethylase ALKBH5 Suppresses Invasion of Gastric Cancer via PKMYT1 m6A Modification. Molecular Cancer, 21, Article No. 34.
https://doi.org/10.1186/s12943-022-01522-y
[76]  Zhang, J., Guo, S., Piao, H., Wang, Y., Wu, Y., Meng, X., et al. (2019) ALKBH5 Promotes Invasion and Metastasis of Gastric Cancer by Decreasing Methylation of the lncRNA NEAT1. Journal of Physiology and Biochemistry, 75, 379-389.
https://doi.org/10.1007/s13105-019-00690-8
[77]  Wang, S., Wang, Y., Zhang, Z., Zhu, C., Wang, C., Yu, F., et al. (2021) Long Non-Coding RNA NRON Promotes Tumor Proliferation by Regulating ALKBH5 and Nanog in Gastric Cancer. Journal of Cancer, 12, 6861-6872.
https://doi.org/10.7150/jca.60737
[78]  Zhao, H., Xu, Y., Xie, Y., Zhang, L., Gao, M., Li, S., et al. (2021) m6A Regulators Is Differently Expressed and Correlated with Immune Response of Esophageal Cancer. Frontiers in Cell and Developmental Biology, 9, Article 650023.
https://doi.org/10.3389/fcell.2021.650023
[79]  Xue, J., Xiao, P., Yu, X. and Zhang, X. (2021) A Positive Feed-back Loop between AlkB Homolog 5 and miR-193a-3p Promotes Growth and Metastasis in Esophageal Squamous Cell Carcinoma. Human Cell, 34, 502-514.
https://doi.org/10.1007/s13577-020-00458-z
[80]  Nagaki, Y., Motoyama, S., Yamaguchi, T., Hoshizaki, M., Sato, Y., Sato, T., et al. (2020) m6A demethylase ALKBH5 Promotes Proliferation of Esophageal Squamous Cell Carcinoma Associated with Poor Prognosis. Genes Cells, 25, 547-561.
https://doi.org/10.1111/gtc.12792
[81]  Xiao, D., Fang, T.X., Lei, Y., Xiao, S.J., Xia, J.W., Lin, T.Y., et al. (2021) m6A Demethylase ALKBH5 Suppression Contributes to Esophageal Squamous Cell Carcinoma Progression. Aging, 13, 21497-21512.
https://doi.org/10.18632/aging.203490
[82]  Jiang, H., Ning, G., Wang, Y. and Lv, W. (2021) Identification of an m6A-Related Signature as Biomarker for Hepatocellular Carcinoma Prognosis and Correlates with Sorafenib and An-ti-PD-1 Immunotherapy Treatment Response. Disease Markers, 2021, Article ID: 5576683.
https://doi.org/10.1155/2021/5576683
[83]  Han, S., Xue, L., Wei, Y., Yong, T., Jia, W., Qi, Y., et al. (2023) Bone Lesion-Derived Extracellular Vesicles Fuel Prometastatic Cascades in Hepatocellular Carcinoma by Transferring ALKBH5-Targeting miR-3190-5p. Advanced Science, 10, Article ID: 2207080.
https://doi.org/10.1002/advs.202207080
[84]  Chen, Y., Zhao, Y., Chen, J., Peng, C., Zhang, Y., Tong, R., et al. (2020) ALKBH5 Suppresses Malignancy of Hepatocellular Carcinoma via m6A-Guided Epigenetic Inhibition of LYPD1. Molecular Cancer, 19, Article No. 123.
https://doi.org/10.1186/s12943-020-01239-w
[85]  Wang, W., Huang, Q., Liao, Z., Zhang, H., Liu, Y., Liu, F., et al. (2023) ALKBH5 Prevents Hepatocellular Carcinoma Progression by Post-Transcriptional Inhibition of PAQR4 in an m6A Dependent Manner. Experimental Hematology & Oncology, 12, Article No. 1.
https://doi.org/10.1186/s40164-022-00370-2
[86]  Li, L.J., Fan, Y.G., Leng, R.X., Pan, H.F. and Ye, D.Q. (2018) Potential Link between m6A Modification and Systemic Lupus Erythematosus. Molecular Immunology, 93, 55-63.
https://doi.org/10.1016/j.molimm.2017.11.009
[87]  Brito-Zerón, P., et al. (2016) Sj?gren Syndrome. Nature Re-views Disease Primers, 2, Article No. 16047.
https://doi.org/10.1038/nrdp.2016.47
[88]  Xiao, Q., Wu, X., Deng, C., Zhao, L., Peng, L., Zhou, J., et al. (2022) The Potential Role of RNA N6-Methyladenosine in Primary Sj?gren’s Syndrome. Frontiers in Medicine, 9, Article 959388.
https://doi.org/10.3389/fmed.2022.959388
[89]  Sun, X., Lu, J., Li, H. and Huang, B. (2022) The Role of m6A on Female Reproduction and Fertility: From Gonad Development to Ovarian Aging. Frontiers in Cell and Devel-opmental Biology, 10, Article 884295.
https://doi.org/10.3389/fcell.2022.884295
[90]  Zhao, S., Lu, J., Chen, Y., Wang, Z., Cao, J. and Dong, Y. (2021) Exploration of the Potential Roles of m6A Regulators in the Uterus in Pregnancy and Infertility. Journal of Reproductive Immunology, 146, Article ID: 103341.
https://doi.org/10.1016/j.jri.2021.103341
[91]  Jiang, Y., Wan, Y., Gong, M., Zhou, S., Qiu, J. and Cheng, W. (2020) RNA Demethylase ALKBH5 Promotes Ovarian Carcinogenesis in a Simulated Tumour Microenvironment through Stimulating NF-κB Pathway. Journal of Cellular and Molecular Medicine, 24, 6137-6148.
[92]  Qu, S., Jin, L., Huang, H., Lin, J., Gao, W. and Zeng, Z. (2021) A Positive-Feedback Loop between HBx and ALKBH5 Promotes Hepatocellular Carcinogenesis. BMC Cancer, 21, Article No. 686.
https://doi.org/10.1186/s12885-021-08449-5
[93]  Zhu, Z., Qian, Q., Zhao, X., Ma, L. and Chen, P. (2020) N6-Methyladenosine ALKBH5 Promotes Non-Small Cell Lung Cancer Progress by Regulating TIMP3 Stability. Gene, 731, Article ID: 144348.
https://doi.org/10.1016/j.gene.2020.144348
[94]  Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., et al. (2021) ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycol-ysis. Molecular Therapy: Nucleic Acids, 23, 27-41.
https://doi.org/10.1016/j.omtn.2020.10.031
[95]  Yuan, Y., Yan, G., He, M., Lei, H., Li, L., Wang, Y., et al. (2021) ALKBH5 Suppresses Tumor Progression via an m6A-Dependent Epigenetic Silencing of pre-miR-181b-1/YAP Signal-ing Axis in Osteosarcoma. Cell Death & Disease, 12, Article No. 60.
https://doi.org/10.1038/s41419-020-03315-x
[96]  Qiu, X., Yang, S., Wang, S., Wu, J., Zheng, B., Wang, K., et al. (2021) M6A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Research, 81, 4778-4793.
https://doi.org/10.1158/0008-5472.CAN-21-0468
[97]  Fang, Z., Mu, B., Liu, Y., Guo, N., Xiong, L., Guo, Y., et al. (2022) Discovery of a Potent, Selective and Cell Active Inhibitor of m6A Demethylase ALKBH5. European Journal of Medicinal Chemistry, 238, Article ID: 114446.
https://doi.org/10.1016/j.ejmech.2022.114446
[98]  Perry, G.S., Das, M. and Woon, E.C.Y. (2021) Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. Journal of Medicinal Chemistry, 64, 16974-17003.
https://doi.org/10.1021/acs.jmedchem.1c01694
[99]  Chen, G., Zhao, Q., Yuan, B., Wang, B., Zhang, Y., Li, Z., et al. (2021) ALKBH5-Modified HMGB1-STING Activation Contributes to Radiation Induced Liver Disease via Innate Immune Response. International Journal of Radiation Oncology?Biology?Physics, 111, 491-501.
https://doi.org/10.1016/j.ijrobp.2021.05.115
[100]  Li, Y., Lu, R., Niu, Z., Wang, D. and Wang, X.L. (2023) Suxiao Jiuxin Pill Alleviates Myocardial Ischemia—Reperfusion Injury through the ALKBH5/GSK3β/mTOR Pathway. Chinese Medicine, 18, Article No. 31.
https://doi.org/10.1186/s13020-023-00736-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413