全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

蛋白质组学技术在中药研究中的应用进展
Progress in the Application of Proteomics Technology in Traditional Chinese Medicine Research

DOI: 10.12677/BP.2023.134026, PP. 187-194

Keywords: 蛋白质组学,作用机制,中药
Proteomics
, Mechanism, Traditional Chinese Medicine (TCM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

中药于我国历史悠久,时至今日,其依旧有着不可替代的药用价值。中药相较于化学合成药物,其由生物体自身产生,在结构多样性、活性独特性等方面作用优异。然而,由于中药成分复杂,相关作用机理的研究一直是限制中药发展的一道关键难题。蛋白质组学技术能够从整体上把握机体生理、病理和信号传导途径,这恰与中药多靶点作用的特点相契合。越来越多有关中药作用机理的研究应用到蛋白质组学技术,我们对作用机理、药效及安全性等问题的理解不断深入,以求打破中药发展障碍,为之更好的应用提供可能性。本文结合相关文献,简要介绍蛋白质组学研究技术以及在中药作用效果和作用机制等方面的应用进展。
Traditional Chinese medicine has a long history in China, and it still has irreplaceable medicinal value today. Compared with chemosynthetic drugs, traditional Chinese medicines are produced by the organism itself and have excellent functions in structural diversity and activity uniqueness. However, due to the complex composition of traditional Chinese medicine, the study of related mechanism has been a key problem that restricts the development of traditional Chinese medicine. Proteomics can help understand the physiological, pathological and signal transduction pathways of the body as a whole, which is in line with the characteristics of multitarget role of traditional Chinese medicine. More and more researches on the mechanism of action of traditional Chinese medicine have been applied to proteomics, and our understanding of the mechanism of action, efficacy and safety of traditional Chinese medicine has been deepened, so as to break down the barriers to the development of traditional Chinese medicine and provide possibilities for its better application. This paper combines relevant literature to briefly introduce proteomics research techniques and their research applications in the effects and mechanisms of traditional Chinese medicine.

References

[1]  邢建宇, 许波. 蛋白质组学与中医药现代化研究[J]. 中医药信息, 2006, 23(2): 3-5.
[2]  任天颖, 郑大恒. 浅谈中药现代化的发展现状及对策[J]. 绍兴文理学院学报(自然科版), 2007, 27(10): 63-67.
[3]  张晓磊, 张文博, 胡良海. 药物靶标蛋白筛选的化学蛋白质组学研究进展[J]. 中国科学(生命科学), 2018, 48(2): 160-170.
[4]  Klann, K., Tascher, G. and Münch, C. (2021) Virus Systems Biology: Proteomics Profiling of Dynamic Protein Networks during Infection. Advances in Virus Research, 109, 1-29.
https://doi.org/10.1016/bs.aivir.2020.12.001
[5]  Aslam, B., Basit, M., Nisar, M.A., et al. (2017) Proteomics: Technologies and Their Applications. Journal of Chromatographic Science, 55, 182-196.
https://doi.org/10.1093/chromsci/bmw167
[6]  Suo, T., Wang, H. and Li, Z. (2016) Applica-tion of Proteomics in Research on Traditional Chinese Medicine. Expert Review of Proteomics, 13, 873-881.
https://doi.org/10.1080/14789450.2016.1220837
[7]  Zhang, H.W., Lv, C., Zhang, L.J., et al. (2021) Application of Omics- and Multi-Omics-Based Techniques for Natural Product Target Discovery. Biomedicine & Pharmacotherapy, 141, Article ID: 111833.
https://doi.org/10.1016/j.biopha.2021.111833
[8]  李晓宇, 黄娜娜, 孙蓉. 蛋白组学技术在中药肝毒性中的应用[J]. 中国药物警戒, 2015(5): 282-285, 289.
[9]  何华勤. 简明蛋白组组学[M]. 北京: 高等教育出版社, 2022.
[10]  Wilkins, M.R., Sanchez, J.C., Gooley, A.A., et al. (1996) Progress with Proteome Projects: Why All Pro-teins Expressed by a Genome Should Be Identified and How to Do It. Biotechnology and Genetic Engineering Reviews, 13, 19-50.
https://doi.org/10.1080/02648725.1996.10647923
[11]  袁枝花, 于潇, 段雅迪, 等. 蛋白质组学在中药作用靶点研究中的方法和应用[J]. 中国中药杂志, 2020, 45(5): 1034-1038.
[12]  Fedorov, I.I., Lineva, V.I., Tara-sova, I.A. and Gorshkov, M.V. (2022) Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. Biochemistry (Moscow), 87, 983-994.
https://doi.org/10.1134/S0006297922090103
[13]  王红霞. 基于化学蛋白质组学的激酶组学研究进展[J]. 国际药学研究杂志, 2014, 41(3): 259-267.
[14]  王平, 罗佳, 李海舟, 等. 化学蛋白质组学鉴定天然产物作用靶标的研究进展[J]. 天然产物研究与开发, 2020, 32(1): 144-152.
[15]  岳荣彩, 单磊, 严诗楷, 等. 化学蛋白质组学在中药现代化研究中的应用[J]. 世界科学技术——中医药现代化, 2010, 12(4): 502-510.
[16]  Joanna, K. and Rolf, B. (2012) Activity-Based Protein Profiling for Natural Product Target Discovery. Topics in Current Chemistry, 324, 43-84.
https://doi.org/10.1007/128_2011_289
[17]  Hu, C.J., Song, G., Huang, W., et al. (2012) Identification of New Autoantigens for Primary Biliary Cirrhosis Using Human Proteome Microarrays. Molecular & Cellular Proteomics, 11, 669-680.
https://doi.org/10.1074/mcp.M111.015529
[18]  李礼, 樊小农, 付静静, 等. 差异蛋白质组学在中医药领域研究路线及应用现状[J]. 中国中医基础医学杂志, 2015, 21(12): 1602-1606.
[19]  孔汉金, 张克山, 刘永杰, 等. 同位素标记相对和绝对定量蛋白组技术研究进展[J]. 生物技术通讯, 2014, 25(2): 295-300.
[20]  Zhang, Y., Wen, Z., Washburn, M.P., et al. (2015) Improving Label-Free Quantitative Proteomics Strategies by Distributing Shared Peptides and Stabilizing Variance. Analytical Chemistry, 87, 4749-4756.
https://doi.org/10.1021/ac504740p
[21]  钱小红. 定量蛋白质组学分析方法[J]. 色谱, 2013, 31(8): 719-723.
[22]  Ong, S.E., Blagoev, B., Kratchmarova, I., et al. (2002) Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics, 1, 376-386.
https://doi.org/10.1074/mcp.M200025-MCP200
[23]  Gygi, S.P., Rist, B., Gerber, S.A., et al. (1999) Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nature Biotechnology, 17, 994-999.
https://doi.org/10.1038/13690
[24]  Ross, P.L., Huang, Y.N., Marchese, J.N., et al. (2004) Muhiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-Reactive Isobaric Tagging Reagents. Molecular & Cellular Pro-teomics, 3, 1154-1169.
https://doi.org/10.1074/mcp.M400129-MCP200
[25]  Wang, Z., Kavdia, K., Dey, K.K., et al. (2020) High-Throughput and Deep-Proteome Profiling by 16-Plex Tandem Mass Tag Labeling Coupled with Two-Dimensional Chromatography and Mass Spectrometry. Journal of Visualized Experiments, 162, e61684.
https://doi.org/10.3791/61684
[26]  We, J.S., Park, H.S. and Kwonk, R. (2007) Proteome Analysis of Various Types of Panax Ginseng Using 2-Dimensional Electrophoresis. Journal of Pharmacopuncture, 10, 5-18.
https://doi.org/10.3831/KPI.2007.10.2.005
[27]  Kim, S.I., Kim, J.Y., Kim, E.A., et al. (2003) Proteome Analysis of Hairy Root from Panax ginseng C. A. Meyer Using Peptide Fingerprinting, Internal Sequencing and Expressed Se-quence Tag Data. Proteomics, 3, 2379-2392.
https://doi.org/10.1002/pmic.200300619
[28]  Ma, R., Sun, L., Chen, X., et al. (2013) Proteomic Changes in Dif-ferent Growth Periods of Ginseng Roots. Plant Physiology and Biochemistry, 67, 20-32.
https://doi.org/10.1016/j.plaphy.2013.02.023
[29]  Kim, S.W., Gupta, R., Lee, S.H., et al. (2016) An Integrated Bi-ochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits. Frontiers in Plant Science, 7, Article 994.
https://doi.org/10.3389/fpls.2016.00994
[30]  赵楠, 程孟春, 吴玉林, 等. 基于超高效液相色谱-高分辨质谱的多肽组学技术用于人参不同部位多肽的差异分析[J]. 色谱, 2019, 37(12): 1305-1313.
[31]  Xu, J.Y., Dai, C., Shan, J.J., et al. (2018) Determination of the Effect of Pinellia ternata (Thunb.) Breit. on Nervous System Development by Proteomics. Journal of Ethnopharmacology, 213, 221-229.
https://doi.org/10.1016/j.jep.2017.11.014
[32]  Peng, F., Zhang, N., Wang, C., et al. (2020) Aconitine Induces Car-diomyocyte Damage by Mitigating BNIP3-Dependent Mitophagy and the TNFα-NLRP3 Signalling Axis. Cell Prolifera-tion, 53, e12701.
https://doi.org/10.1111/cpr.12701
[33]  Lin, L., Liu, Y., Fu, S., et al. (2019) Inhibition of Mitochondrial Complex Function—The Hepatotoxicity Mechanism of Emodin Based on Quantitative Proteomic Analyses. Cells, 8, Article 263.
https://doi.org/10.3390/cells8030263
[34]  Zan, K., Lei, W., Li, Y., Wang, Y., Liu, L., Zuo, T., Jin, H. and Ma, S. (2022) Integrative Metabolomics and Proteomics Detected Hepatotoxicity in Mice Associated with Alkaloids from Eu-patorium fortune Turcz. Toxins, 14, Article 765.
https://doi.org/10.3390/toxins14110765
[35]  许凯霞, 王永辉, 郭亚菲, 等. 左归丸含药血清对高糖负荷下ICR小鼠早期胚胎影响的蛋白组学研究[J]. 中华中医药杂志, 2020, 35(7): 3598-3602.
[36]  Liu, X., Wang, Q., Cui, Y., et al. (2020) Multiple Protein and mRNA Expression Correlations in the Rat Cerebral Cortex after Ischemic Injury and Repair Due to Buchang Naoxintong Jiaonang (BNJ) Intervention. Bio-medicine & Pharmacotherapy, 125, Article ID: 109917.
https://doi.org/10.1016/j.biopha.2020.109917
[37]  Hou, C., Guo, D., Yu, X., et al. (2020) TMT-Based Proteomics Analysis of the Anti-Hepatocellular Carcinoma Effect of Combined Dihydroartemisinin and Sorafenib. Biomedicine& Pharmacotherapy, 126, Article ID: 109862.
https://doi.org/10.1016/j.biopha.2020.109862
[38]  Yue, Q.X., Xie, F.B., Song, X.Y., et al. (2012) Proteomic Studies on Protective Effects of Salvianolic Acids, Notoginsengnosides and Combination of Salvianolic Acids and Noto-ginsengnosides against Cardiac Ischemic-Reperfusion Injury. Journal of Ethnopharmacology, 141, 659-667.
https://doi.org/10.1016/j.jep.2011.08.044
[39]  周玉利. 丹参酮IIA对PDGF-BB诱导的平滑肌细胞蛋白质组的影响[D]: [硕士学位论文]. 杭州: 浙江中医药大学, 2016.
[40]  马艺鑫, 贾连群, 宋囡. 等. 基于iTRAQ技术研究丹参酮IIA对高脂血症大鼠肝脏蛋白质的影响[J]. 中国中西医结合杂志, 2017, 37(5): 563-568.
[41]  Song, J., Jiang, J., Kuai, L., et al. (2022) TMT-Based Proteomics Analysis Reveals the Protective Effect of Jueyin Granules on Imiquimod-Induced Psoriasis Mouse Model by Causing Autophagy. Phytomedicine, 96, Article ID: 153846.
https://doi.org/10.1016/j.phymed.2021.153846

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413