全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微型潜血泵轴流式叶轮结构分析
Structure Analysis of Axial Flow Impeller of Micro Occult Blood Pump

DOI: 10.12677/IJFD.2023.114010, PP. 103-111

Keywords: 人工心脏,微型轴流式血泵,溶血,计算流体力学,数值模拟
Artificial Heart
, Micro-Axial Flow Blood Pump, Hemolysis, Computational Fluid Dynamics (CFD), Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:分析在长度小于20 mm,直径5 mm的高速微型潜血式轴流血泵内,不同形态叶轮对泵血液的损伤情况,找到最优叶轮结构。方法:运用计算流体力学(CFD)对一款微型潜血式轴流泵进行数值仿真,改变叶轮叶片数量(两片,三片,四片),分析血泵内的流场分布。通过研究其速度、压力和剪切应力场分布情况来分析血泵的水力性能以及对流道内血液的损伤情况。结果:数据结果显示,三种叶片NIH值分别为0.07,0.05,和0.08。结论:实验表明,三叶片式叶轮条件下,剪切应力小,NIH小,比较分析,三叶片式叶轮更适用于高速微型潜血式轴流血泵的叶轮设计方案。
Objective: To analyze the damage of different impellers to the blood in a high-speed micro-submersible axial blood pump with a length of less than 20 mm and a diameter of 5 mm, and to find the optimal impeller structure. Methods: Numerical simulation of a miniature submersible axial flow pump using Computational Fluid Dynamics (CFD) was performed to vary the number of impeller blades (two, three, and four) to analyze the flow field distribution within the blood pump. The hydraulic performance of the blood pump and the damage to the blood in the flow path are analyzed by studying its velocity, pressure and shear stress field distribution. Results: The data results showed that the NIH values for the three blades were 0.07, 0.05, and 0.08, respectively. Conclusions: Experiments show that the three-bladed impeller conditions, shear stress is small, NIH is small, comparative analysis, three-bladed impeller is more suitable for high-speed micro-submersible axial bleeder pump impeller design scheme.

References

[1]  Benjamin, E.J., Virani, S.S., Callaway, C.W., et al. (2018) Heart Disease and Stroke Statistics—2018 Update: A Report from the American Heart Association. Circulation, 137, e493.
https://doi.org/10.1161/CIR.0000000000000573
[2]  O’Halloran, C.P., Thiagarajan, R.R., Yarlagadda, V.V., et al. (2019) Outcomes of Infants Supported with Extracorporeal Membrane Oxygenation Using Centrifugal versus Roller Pumps: An Analysis from the Extracorporeal Life Support Organization Registry. Pediatric Critical Care Medicine, 20, 1177-1184.
https://doi.org/10.1097/PCC.0000000000002103
[3]  Halaweish, I., et al. (2015) Roller and Centrifugal Pumps: A Retrospective Comparison of Bleeding Complications in Extracorporeal Membrane Oxygenation. ASAIO Journal, 61, 496-501.
https://doi.org/10.1097/MAT.0000000000000243
[4]  Hanke, J.S., Rojas, S.V., Mahr, C., et al. (2018) Five-Year Results of Patients Supported by HeartMate II: Outcomes and Adverse Events. European Journal of Cardio-Thoracic Surgery, 53, 422-427.
https://doi.org/10.1093/ejcts/ezx313
[5]  Han, D., Shah, A., Awad, M.A., et al. (2022) De-velopment of an Ambulatory Extracorporeal Membrane Oxygenation System: From Concept to Clinical Use. Applica-tions in Engineering Science, 10, Article ID: 100093.
https://doi.org/10.1016/j.apples.2022.100093
[6]  Zhang, J., Chen, Z., Griffith, B.P. and Wu, Z.J. (2020) Compu-tational Characterization of Flow and Blood Damage Potential of the New Maglev CH-VAD Pump versus the HVAD and HeartMate II Pumps. The International Journal of Artificial Organs, 43, 653-662.
https://doi.org/10.1177/0391398820903734
[7]  He, G., Zhang, J., Shah, A., et al. (2021) Flow Characteristics and Hemolytic Performance of the New Breethe Centrifugal Blood Pump in Comparison with the CentriMag and Rotaflow Pumps. The International Journal of Artificial Organs, 44, 829-837.
https://doi.org/10.1177/03913988211041635
[8]  许剑, 周娜, 王妍, 等. 一种微型心室辅助装置的研制[J]. 中西医结合心血管病电子杂志, 2018, 6(7): 12-13.
[9]  齐家兴. 微型左心室辅助装置的优化与血液损伤预测[D]: [硕士学位论文]. 武汉: 华中科技大学, 2011.
[10]  王晨, 徐博翎, 吴鹏. 叶片倒角对FDA标准血泵流场和溶血预测的影响[J]. 医用生物力学, 2019(1): 58-63.
[11]  Li, Y., Xi, Y., Wang, H., et al. (2022) A New Way to Evaluate Thrombotic Risk in Failure Heart and Ventricular Assist Devices. Medicine in Novel Technology and Devices, 16, Article ID: 100135.
https://doi.org/10.1016/j.medntd.2022.100135
[12]  Chen, Z., Jena, S.K., Giridharan, G.A., et al. (2019) Shear Stress and Blood Trauma under Constant and Pulse-Modulated Speed CF-VAD Operations: CFD Analysis of the HVAD. Medical & Biological Engineering & Computing, 57, 807-818.
https://doi.org/10.1007/s11517-018-1922-0
[13]  Chen, Z., Koenig, S.C., Slaughter, M.S., et al. (2018) Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibα, Glycoprotein VI and Glycoprotein IIb/IIIa. ASAIO Journal (American Society for Artificial Internal Organs: 1992), 64, 773-778.
https://doi.org/10.1097/MAT.0000000000000722
[14]  Bludszuweit, C. (2010) Three-Dimensional Numerical Pre-diction of Stress Loading of Blood Particles in a Centrifugal Pump. Artificial Organs, 19, 590-596.
https://doi.org/10.1111/j.1525-1594.1995.tb02386.x
[15]  Giersiepen, M., Wurzinger, L.J., Opitz, R., et al. (1990) Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves. International Journal of Artificial Organs, 13, 300-306.
https://doi.org/10.1177/039139889001300507
[16]  Chen, Z., Jena, S.K., Giridharan, G.A., et al. (2017) Flow Fea-tures and Device-Induced Blood Trauma in CF-VADs under a Pulsatile Blood Flow Condition: A CFD Comparative Study. International Journal for Numerical Methods in Biomedical Engineering, 34, e2924.
https://doi.org/10.1002/cnm.2924
[17]  Farinas, M.I., Garon, A., Lacasse, D., et al. (2006) Asymptotically Con-sistent Numerical Approximation of Hemolysis. Journal of Biomechanical Engineering, 128, 688-696.
https://doi.org/10.1115/1.2241663
[18]  Taskin, M.E., Fraser, K.H., Zhang, T., et al. (2012) Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation. Asaio Journal, 58, 363-372.
https://doi.org/10.1097/MAT.0b013e318254833b
[19]  Ding, J., Niu, S., Chen, Z., et al. (2015) Shear-Induced Hemolysis: Species Differences. Artificial Organs, 39, 795-802.
https://doi.org/10.1111/aor.12459
[20]  王芳群. 应用CFD技术探明叶轮设计对人工心脏血泵内流场及切应力分布的影响[D]: [硕士学位论文]. 镇江: 江苏大学, 2003.
[21]  Chen, Z., Zhang, J., Li, T., et al. (2020) The Impact of Shear Stress on Device-Induced Platelet Hemostatic Dysfunction Relevant to Thrombosis and Bleeding in Mechanically Assisted Circulation. Artificial Organs, 44, E201-E213.
https://doi.org/10.1111/aor.13609
[22]  Gross-Hardt, S., Hesselmann, F., Arens, J., et al. (2019) Low-Flow As-sessment of Current ECMO/ECCO2R Rotary Blood Pumps and the Potential Effect on Hemocompatibility. Critical Care, 23, Article No. 348.
https://doi.org/10.1186/s13054-019-2622-3
[23]  Horobin, J.T., Sabapathy, S. and Simmonds, M.J. (2020) Red Blood Cell Tolerance to Shear Stress above and below the Subhemolytic Threshold. Biomechanics and Modeling in Mechanobiology, 19, 851-860.
https://doi.org/10.1007/s10237-019-01252-z
[24]  Han, D., Zhang, J., Griffith, B.P., et al. (2022) Models of Shear-Induced Platelet Activation and Numerical Implementation with Computational Fluid Dynamics Approaches. Journal of Biomechanical Engineering, 144, Article No. 040801.
https://doi.org/10.1115/1.4052460

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133