全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海南鹦哥岭不同海拔热带山地雨林土壤微生物群落多样性差异
Soil Microbial Community Diversity under Different Altitudes in the Tropical Mountain Rainforests of Yinggeling National Nature Reserve in Hainan Island

DOI: 10.12677/AMB.2023.124015, PP. 130-146

Keywords: 热带山地雨林,海拔梯度,Biolog,土壤微生物,土壤微生物群落及多样性
Tropical Mountain Rainforest
, Altitude Gradient, Biolog, Soil Microorganism, Soil Microbial Community and Diversity

Full-Text   Cite this paper   Add to My Lib

Abstract:

土壤微生物作为土壤生态系统的重要组成部分,是自然生态系统重要的分解者,在生态系统的物质循环和能量转化中占有重要的地位,同时在维持陆地生态系统的结构和稳定其功能等诸多方面都发挥十分重要的作用。本研究以鹦哥岭不同海拔热带山地雨林的8个固定样地为实验样地,采用Biolog-ECO法,探讨了不同海拔梯度下的土壤微生物群落多样性变化特征。结果表明:部分海拔样地的土壤和凋落物的理化性质、土壤酶活性差异显著,且南坡和北坡不同。反映土壤微生物活性的AWCD值的大小顺序为:YGL22 (591 m) > YGL32 (550 m) > YGL23 (458 m) > YGL21 (745 m) > YGL18 (1025 m) > YGL24 (800 m) > YGL16 (1355 m) > YGL34 (406 m);南坡745 m海拔处样地土壤微生物群落对碳源的利用模式为理论模式I,南坡1025 m、1355 m与北坡458 m、800 m海拔处样地土壤微生物群落对碳源的利用模式为理论模式II,南坡406 m、550 m和北坡591 m海拔处样地土壤微生物群落对碳源的利用模式为理论模式III。土壤微生物群落功能多样性指数随海拔的升高先增加后减少,符合“中峰分布”格局。土壤微生物碳源代谢多样性的垂直地带性差异主要体现在碳水化合物、多聚物类和羧酸类碳源的利用,土壤微生物群落功能多样性与土壤有效磷含量显著正相关(p < 0.05),与土壤酸性磷酸酶、凋落物有机碳含量显著负相关(p < 0.05),与土壤过氧化氢酶显著负相关(p < 0.05)。土壤有效磷、酸性磷酸酶、过氧化氢酶和凋落物有机碳含量可能是导致鹦哥岭热带山地雨林土壤微生物群落功能多样性的海拔分布异质性的重要影响因子,研究结果为进一步探讨热带山地雨林与土壤微生物之间的关系奠定了基础。
Soil microbes are an important component of soil ecosystem and playing a key role in nutrient and energy cycling. At the same time, it plays a very important role in maintaining the structure and stabilizing the functions of terrestrial ecosystems. This study used 8 fixed plots of tropical mountain rainforests at different altitudes in Yinggeling as experimental plots, and used the BIOLOG- ECO method to explore the variation of soil microbial community diversity under different altitude gradients. The results showed that three were significant differences in the physicochemical properties and soil enzyme activities of soil and litter in some altitude plots, and the south and north slopes were different. The order of AWCD values reflecting soil microbial activity was YGL22 (591 m) > YGL32 (550 m) > YGL23 (458 m) > YGL21 (745 m) > YGL18 (1025 m) > YGL24 (800 m) > YGL16 (1355 m) > YGL34 (406 m); the utilization mode of soil microbial communities on carbon sources at elevations of 745 m on the south slope was the theoretical mode I, 1025 m and 1355 m on the south slope, 458 m and 800 m on the north slope were the theoretical mode II, 406 m and 550 m on the south slope and 591 m on the north slope were the theoretical mode III. The functional diversity index of soil microbial community increased first and then decreased with the increase of altitude, which conformed to the pattern of “Middle Peak Distribution”, and the vertical zonal differences in the metabolic diversity of soil microbial carbon sources were mainly reflected in the utilization of carbohydrates, polymers and carboxylic acids. The functional diversity of soil microbial community was significantly positively correlated with soil available phosphorus content (p < 0.05),

References

[1]  Rutigliano, F.A., Ascoli, R.D. and Virzo De Santo, A. (2004) Soil Microbial Metabolism and Nutrient Status in a Mediterranean Area as Affected by Plant Cover. Soil Biology & Biochemistry, 36, 1719-1729.
https://doi.org/10.1016/j.soilbio.2004.04.029
[2]  Falkowski, P.G., Fenchel, T. and Delong E.F. (2008) The Microbial Engines That Drive Earth’s Bio-Geochemical Cycles. Science, 320, 1034-1039.
https://doi.org/10.1126/science.1153213
[3]  张地, 张育新, 曲来叶, 等. 海拔对辽东栎林地土壤微生物群落的影响应[J]. 应用生态学报, 2012, 23(8): 2041-2048.
[4]  Fierer, N., Mccain, C.M., Meir, P., et al. (2011) Microbes Do Not Follow the Elevational Diversity Patterns of Plants and Animals. Ecology, 92, 797-804.
https://doi.org/10.1890/10-1170.1
[5]  Waldrop, M.P. and Firestone, M.K. (2006) Seasonal Dynamics of Microbial Community Composition and Function in Oak Canopy and Open Grassland Soils. Microbial Ecology, 52, 470-479.
https://doi.org/10.1007/s00248-006-9100-6
[6]  Garland, J.L. and Mills, A.L. (1991) Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Applied and Environmental Microbiology, 57, 2351-2359.
https://doi.org/10.1128/aem.57.8.2351-2359.1991
[7]  Hacck, S.K., Garchow, H., Klyg, J.M. and Forney, L.J. (1995) Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial Community Carbon Source Utilization Patterns. Applied Environmental Microbiology, 61, 1258-1268.
https://doi.org/10.1128/aem.61.4.1458-1468.1995
[8]  Zak, D.R., Tilman, D., Parmenter, R.R., et al. (1994) Plant Production and Soil Microorganisms in Late-Successional Ecosystems a Continental-Scale Study. Ecology, 75, 2333-2347.
https://doi.org/10.2307/1940888
[9]  Zheng, H., Ouyang, Z.Y., Fang, Z.G., et al. (2004) Application of Biology to Study on Soil Microbial Community Functional Diversity. Acta Pedologica Sinica, 41, 456-461.
[10]  朱平, 陈仁升, 宋耀选, 刘光琇, 陈拓, 张威. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业科学, 2015, 24(6): 75-84
[11]  蔡进军, 董立国, 李生宝, 等. 黄土丘陵区不同土地利用方式土壤微生物功能多样性特征[J]. 生态环境学报, 2016, 25(4): 555-562.
[12]  范垚城, 覃林, 王雅菲, 等. 东北天然次生林不同经营模式下土壤微生物碳源利用与功能多样性[J]. 林业科学, 2016, 52(7): 68-77.
[13]  李小容, 韦金玉, 陈云, 等. 海南岛不同林龄的木麻黄林地土壤微生物的功能多样性[J]. 植物生态学报, 2014, 38(6): 608-618.
[14]  厉桂香, 马克明. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 2018, 38(5): 1521-1529.
[15]  孙雪, 隋心, 韩冬雪, 等. 原始红松林退化演替后土壤微生物功能多样性的变化[J]. 环境科学研究, 2017, 30(6): 911-919.
[16]  徐琳, 张雪娇, 田忠赛, 等. 秭归张家冲坡耕地作物类型对土壤微生物功能多样性的影响[J]. 生态学杂志, 2017, 36(6): 1555-1563.
[17]  刘磊. 海南鹦哥岭自然保护区国家自然保护区林地管理研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2017.
[18]  廖常乐, 王合升, 黄娟, 王慧颖. 鹦哥岭自然保护区鹦哥岭自然保护区树蛙种群分布及数量调查[J]. 动物学杂志, 2013, 48(3): 377-381.
[19]  王慧颖, 廖常乐, 王合升, 王云鹏, 许碧果, 蔡金山. 鹦哥岭自然保护区保护区海南疣螈分布、种群与栖息地生境特征研究[J]. 四川动物, 2013, 32(3): 434-437.
[20]  吴庭天, 张凯, 杨小波, 龙成, 岑举人, 李东海. 海南鹦哥岭自然保护区广东松(Pinus kwangtungensis)群落优势种群的生态位[J], 热带生物学报, 2017, 8(4): 444-452.
[21]  徐碧果. 鹦哥岭自然保护区与社区经济协调发展对策研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2017.
[22]  张荣京, 陈红锋, 叶育石, 吴世捷, 邢福武, 王发国. 海南鹦哥岭自然保护区的种子植物资源[J]. 华南农业大学学报, 2010, 31(3): 116-118.
[23]  周婷. 鹦哥岭自然保护区森林资源现状及可持续经营分析[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2015.
[24]  王发国, 张荣京, 邢福武, 等. 海南鹦哥岭自然保护区的珍稀濒危植物与保育[J]. 武汉植物学研究, 2007, 25(3): 303-309.
[25]  姜祖扬, 王伟峰, 刘磊, 林帅, 许碧果. 海南鹦哥岭省级自然保护区森林现状与发展初步分析[J]. 热带林业, 2012, 40(3): 16-19
[26]  刘磊, 王合升, 王云鹏, 等. 海南鹦哥岭自然保护区SWOT分析[J]. 热带林业, 2008, 36(1): 8-11.
[27]  鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[28]  中华人民共和国林业行业标准. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999.
[29]  关松荫, 等, 主编. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
[30]  章家恩, 蔡燕飞, 高爱霞, 朱丽霞. 土壤微生物多样性实验研究方法概述[J], 土壤, 2004, 36(4): 346-350.
[31]  Galieva, G.S., Gilmutdinova, I.M., Fomin, V.P., et al. (2018) Monitoring Soil Bacteria with Community-Level Physiological Profiles Using Biolog? ECO-Plates in the Republic of Tatarstan (Russia). IOP Conference Series: Earth and Environmental Science, 107, Article ID: 012057.
https://doi.org/10.1088/1755-1315/107/1/012057
[32]  Rogers, B.F. and Tate III, R.L. (2001) Temporal Analysis of the Soilmicrobial Community Along a Top Sequence in Pineland Soils. Soil Biology and Biochemistry, 33, 1389-1401.
https://doi.org/10.1016/S0038-0717(01)00044-X
[33]  王强, 戴九兰, 吴大千, 等. 微生物生态研究中基于BIOLOG方法的数据分析[J]. 生态学报, 2010, 30(3): 817-823.
[34]  孟苗婧, 张金池, 郭晓平, 等. 海拔对黄山松阔叶混交林土壤微生物功能多样性的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 209-214.
[35]  王颖, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性[J]. 生态学报, 2018, 38(16): 5837-5845.
[36]  韩冬雪, 王宁, 王楠楠, 等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 2015, 26(12): 3649-3656.
[37]  宋贤冲, 郭丽梅, 田红灯, 等. 猫儿山不同海拔植被带土壤微生物群落功能多样性[J]. 生态学报, 2017, 37(16): 5428-5435.
[38]  吴则焰, 林文雄, 陈志芳, 等. 中亚热带森林土壤微生物群落多样性随海拔梯度的变化[J]. 植物生态学报, 2013, 37(5): 397-406.
[39]  吴则焰, 林文雄, 陈志芳, 等. 武夷山国家自然保护区不同植被类型土壤微生物群落特征[J]. 应用生态学报, 2013, 24(8): 2301-2309.
[40]  邵元元, 王志英, 邹莉, 吴韶平. 百菌清对落叶松人工防护林土壤微生物群落的影响[J]. 生态学报, 2011, 31(3), 819-829.
[41]  斯贵才, 王建, 夏燕青, 等. 念青唐古拉山沼泽土壤微生物群落和酶活性随海拔变化特征[J]. 湿地科学, 2014, 12(3): 340-348.
[42]  Klose, S., Acosta-Martínez, V. and Ajwa, H.A. (2006) Microbial Community Composition and Enzyme Activities in a Sandy Loam Soil after Fumigation with Methyl Bromide or Alternative Biocides. Soil Biology and Biochemistry, 38, 1243-1254.
https://doi.org/10.1016/j.soilbio.2005.09.025
[43]  褚海燕, 冯毛毛, 柳旭, 时玉, 杨腾, 高贵峰. 土壤微生物生物地理学: 国内进展与国际前沿[J]. 土壤学报, 2020, 57(3): 515-529.
[44]  厉桂香, 马克明. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 2018, 38(5): 1521-1529.
[45]  Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Gilbert, J.A., Sun, M., Shi, Y., Wang, H., Li, Y., Zhang, J. and Chen, Z. (2019) Phylogenetic Imprint of Woody Plants on the Soil Mycobiome in Natural Mountain Forests of Eastern China. The ISME Journal, 13, 686-697.
https://doi.org/10.1038/s41396-018-0303-x
[46]  Ushio, M., Wagai, R., Balser, T.C. and Kitayama, K. (2008) Variations in the Soil Microbial Community Composition of a Tropicalmontane Forest Ecosystem: Does Tree Species Matter? Soil Biology & Biochemistry, 40, 2699-2702.
https://doi.org/10.1016/j.soilbio.2008.06.023
[47]  张磊, 贾淑娴, 李啸灵, 陆宇明, 林伟盛, 刘小飞, 郭剑芬. 改变凋落物和根系输入对米槠天然林土壤微生物群落的影响[J]. 水土保持学报, 2021, 35(6): 270-277.
[48]  Liu, X.F., Lin, T.C., Vadeboncoeur, M.A., et al. (2019) Root Litter Inputs Exert Greater Influence over Soil C than Does Aboveground Litter in a Subtropical Natural Forest. Plant and Soil, 444, 489-499.
https://doi.org/10.1007/s11104-019-04294-5
[49]  王小平, 杨雪, 杨楠, 辛晓静, 曲耀冰, 赵念席, 高玉葆. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报, 2019, 39(17): 6264-6272.
[50]  Gryta, A., Frac, M. and Oszust, K. (2014) The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge. Applied Biochemistry and Biotechnology, 174, 1434-1443.
https://doi.org/10.1007/s12010-014-1131-8

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133