全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

湿法冶金阳极材料的研究进展
Research Progress on Anode Materials in Hydrometallurgical Metallurgy

DOI: 10.12677/MEng.2023.104010, PP. 79-92

Keywords: 电沉积,阳极,铅合金,PbO2,钛阳极
Electrodeposition
, Anode, Lead Alloy, PbO2, Titanium Anode

Full-Text   Cite this paper   Add to My Lib

Abstract:

湿法冶金一直以来在冶金工业中扮演着重要的角色。而阳极材料则是在这个过程中承担着关键的电化学作用。近年来,国内外学者们对湿法冶金用阳极材料进行了大量研究,研发了多种性能优异的阳极材料。本文主要探讨了湿法冶金中常用的阳极材料,以及它们的特性和应用,并对其进行了展望。
Hydrometallurgical metallurgy has always played an important role in the metallurgical industry, with the anode material performing a crucial electrochemical function in this process. In recent years, domestic and foreign scholars have conducted extensive research on anode materials for hydrometallurgical metallurgy, leading to the development of various high-performance anode materials. This article primarily explores commonly used anode materials in hydrometallurgical metallurgy, their characteristics, and applications, and provides prospects for their future development.

References

[1]  庄思伟, 吴冰, 段宁, 曹江林. 锌电沉积阳极的研究进展[J]. 复合材料学报, 2021, 38(5): 1313-1330.
https://doi.org/10.13801/j.cnki.fhclxb.20201215.007
[2]  Lafront, A.M., Zhang, W., Ghali, E. and Houlachi, G. (2010) Electrochemical Noise Studies of the Corrosion Behaviour of Lead Anodes during Zinc Electrowinning Maintenance. Electrochimica Acta, 55, 6665-6675.
https://doi.org/10.1016/j.electacta.2010.06.005
[3]  Zhang, W., Houlanchi, G. and Ghali, E. (2019) Potenti-ostatic Studies of the Influence of Temperature on Lead-Silver Anodes during Electrowinning and Decay Period. Canadian Metallurgical Quarterly, 58, 272-284.
https://doi.org/10.1080/00084433.2019.1580850
[4]  Zhang, W., Haskouri, S., Houlachi, G. and Ghali, E. (2019) Lead-Silver Anode Behavior for Zinc Electrowinning in Sulfuric Acid Solution. Corrosion Reviews, 37, 157-178.
https://doi.org/10.1515/corrrev-2018-0007
[5]  Rashkov, S., Stefanov, Y., Noncheva, Z., Petrova, M., Dobrev, T., Kunchev, N., Petrov, D., Vlaev, S., Mihnev, V., Zarev, S., Georgieva, L. and Buttinelli, D. (1996) Investigation of the Processes of Obtaining Plastic Treatment and Electrochemical Behaviour of Lead Alloys in Their Capacity as Anodes during the Electroextraction of Zinc II. Electrochemical Formation of Phase Layers on Binary Pb Ag and Pb Ca, and Ternary Pb Ag Ca Alloys in a Sulphuric-Acid Electrolyte for Zinc Electroextraction. Hydromet-allurgy, 40, 319-334.
https://doi.org/10.1016/0304-386X(95)00010-E
[6]  Taguchi, M., Takahashi, H., Nagai, M., Aichi, T. and Sato, R. (2013) Characteristics of Pb-Based Alloy Prepared by Powder Rolling Method as an In-soluble Anode for Zinc Electrowinning. Hydrometallurgy, 136, 78-84.
https://doi.org/10.1016/j.hydromet.2013.03.011
[7]  Lai, Y., Jiang, L., Li, J., et al. (2010) A Novel Porous Pb-Ag Anode for Energy-Saving in Zinc Electrowinning. ECS Meeting Abstracts, 102, 81-86.
https://doi.org/10.1016/j.hydromet.2010.02.011
[8]  Shuai, W., Zhou, X., Ma, C., et al. (2018) Electrochem-ical Properties of Pb-0.6 wt% Ag Powder-Pressed Alloy in Sulfuric Acid Electrolyte Containing Cl-/Mn2+ Ions. Chemicals & Chemistry, 117, 218-226.
https://doi.org/10.1016/j.hydromet.2018.03.018
[9]  Velayutham, D. and Noel, M. (1993) Effect of Additives on the Anodic Codeposition of Lead Dioxide and Polypyrrole. Journal of Applied Electrochemistry, 23, 922-926.
https://doi.org/10.1007/BF00251028
[10]  杨健, 王帅, 陈步明, 郭忠诚. 锌电积用新型Al/Pb-0.3%Ag-0.06%Ca复合β-PbO2颗粒阳极的性能研究[J]. 昆明理工大学学报(自然科学版), 2015, 40(4): 6-13.
[11]  Wang, W., Yuan, T., Li, R., et al. (2019) Electrochemical Corrosion Behaviors of Pb-Ag Anodes by Electric Current Pulse as Sisted Casting. Journal of Electroanalytical Chemistry, 847, Article ID: 113250.
https://doi.org/10.1016/j.jelechem.2019.113250
[12]  Keshavarz Alamdari, E., Darvishi, D., Samadi Khosh-khoo, M., Javid, F.A. and Marashi, S.P.H. (2012) On the Way to Develop Co-Containing Lead Anodes for Zinc Electrowinning. Hydrometallurgy, 119-120, 77-86.
https://doi.org/10.1016/j.hydromet.2012.01.009
[13]  Karbasi, M. and Alamdari, E.K. (2015) Electrochemical Evaluation of Lead Base Composite Anodes Fabricated by Accumulative Roll Bonding Technique. Metallurgical and Materials Transactions, 46, 688-699.
https://doi.org/10.1007/s11663-014-0272-z
[14]  Zhou, Y.L., Chen, J.W. and Jiang, L.X. (2022) Industrial Tests of Composite Porous Pb-Ag Anode in Zinc Electrowinning Plant. Ionics, 29, 377-385.
https://doi.org/10.1007/s11581-022-04812-z
[15]  Lin, W.H., Tsou, C.H. and Ouyang, F.Y. (2018) Electro-chemical Migration of Nano-Sized Ag Interconnects under Deionized Water and Cl?-Containing Electrolyte. Journal of Materials Science: Materials in Electronics, 29, 18331-18342.
https://doi.org/10.1007/s10854-018-9947-6
[16]  McGinnity, J.J. and Nicol, M.J. (2014) The Role of Silver in Enhancing the Electrochemical Activity of Lead and Lead-Silver Alloy Anodes. Hydrometallurgy, 144-145, 133-139.
https://doi.org/10.1016/j.hydromet.2014.02.005
[17]  Zhang, Z., Lafront, A.M., Ghali, E., Houlachi, G., Monteith, G. and Champoux, G. (2013) Effect of Silver Content in Pb-Ag Anodes on the Performance of the Anodes during Zinc Electrowinning. Canadian Metallurgical Quarterly, 48, 327-336.
https://doi.org/10.1179/cmq.2009.48.4.327
[18]  李渊, 蒋良兴, 兒恒发, 等. 锌电积用Pb/Pb-MnO2复合电催化阳极的制备及性能[J]. 中国有色金属学报, 2010, 20(12): 2357-2365.
[19]  Lai, Y.Q., Zhong, S.P., Jiang, L.X., Lü, X.J., Chen, P.R., Li, J. and Liu, Y.X. (2009) Effect of Doping Bi on Oxygen Evolution Potential and Corrosion Behavior of Pb-Based Anode in Zinc Electrowinning. Journal of Central South University of Technology, 16, 236-241.
https://doi.org/10.1007/s11771-009-0040-4
[20]  Prengaman, R. and Siegmund, A. (2000) New Wrought Pb-Ag-Ca Anodes for Zinc Electrowinning to Produce a Protective Oxide Coating Rapidly. In: Dutrizac, J.E., et al., Eds., Lead-Zinc 2000, Wiley, New York, 589-598.
https://doi.org/10.1002/9781118805558.ch39
[21]  Tjandrawan, V. and Nicol, M.J. (2013) Electrochemical Oxidation of Iron(II) Ions on Lead Alloy Anodes. Hydrometallurgy, 131-132, 81-88.
https://doi.org/10.1016/j.hydromet.2012.10.009
[22]  Zhang, W. and Houlachi, G. (2010) Electrochemical Studies of the Performance of Different Pb-Ag Anodes during and after Zinc Electrowinning. Hydrometallurgy, 104, 129-135.
https://doi.org/10.1016/j.hydromet.2010.05.007
[23]  Felder, A. and David Prengaman, R. (2006) Lead Alloys for Permanent Anodes in the Nonferrous Metals Industry. JOM, 58, 28-31.
https://doi.org/10.1007/s11837-006-0197-3
[24]  Karbasi, M., Alamdari, E. and Dehkordi, E. (2019) Electro-chemi Cal Performance of Pb-Co Composite Anode during Zinc Electrowinning. Hydrometallurgy, 183, 51-59.
https://doi.org/10.1016/j.hydromet.2018.10.008
[25]  Zhang, Y.C. and Guo, Z.C. (2017) Anodic Behavior and Microstructure of Pb-Ca-0.6%Sn, Pb-Co3O4 and Pb-WC Composite Anodes during Cu Electrowinning. Journal of Alloys and Compounds, 724, 103-111.
https://doi.org/10.1016/j.jallcom.2017.06.247
[26]  朱茂兰, 涂弢, 朱根松, 郭欢. 铜电积用Pb-RE合金的制备及力学性能研究[J]. 稀有金属与硬质合金, 2014, 42(4): 46-51.
[27]  戴炳蔚, 于杰, 周晓龙, 刘克伟. Pr对锌电积用Pb-Sb合金阳极板性能的影响[J]. 功能材料, 2017, 48(8): 113-116, 123.
[28]  Wang, X., Xu, R., Feng, S., et al. (2020) α(β)-PbO2 Doped with Co3O4 and CNT Porous Composite Materials with en Hanced Electrocatalytic Activity for Zinc Electrowinning. RSC Advances, 10, 1351-1360.
https://doi.org/10.1039/C9RA08032E
[29]  Liu, J., Xu, J. and Han, Z. (2020) A Comparative Study of Lead Alloy Electrode and CF/β-PbO2 Electrode for Zinc Electrowinning. ECS Journal of Solid State Science and Tech-nology, 9, Article ID: 041012.
https://doi.org/10.1149/2162-8777/ab8d94
[30]  Yang, C.J., Shen, Q.F., Zhai, D.C. and Gu, Y. (2019) Carbon Nanotubes Sheathed in Lead for the Oxygen Evolution in Zinc Electrowinning. Journal of Applied Electrochemistry, 49, 67-77.
https://doi.org/10.1007/s10800-018-1277-0
[31]  Mohammadi, M. and Alfantazi, A. (2015) The Performance of Pb MnO2 and Pb-Ag Anodes in 2 Mn(II)-Containing Sul Phuric Acid Electrolyte Solutions. Hy-drometallurgy, 153, 134-144.
https://doi.org/10.1016/j.hydromet.2015.02.009
[32]  Zhang, Q.B. and Hua, Y.X. (2009) Effect of Mn2+ Ions on the Electrodeposition of Zinc from Acidic Sulphate Solutions. Hydrometallurgy, 99, 249-254.
https://doi.org/10.1016/j.hydromet.2009.09.002
[33]  Ky?men, T., Hanaya, M. and Takashima, H. (2014) Electroluminescence Near Interfaces between (Ca, Sr)TiO3:Pr Phosphor and SnO2:Sb Transparent Conductor Thin Film Sprepared by Sol-Gel and Spin-Coating Methods. Journal of Luminescence, 149, 133-137.
https://doi.org/10.1016/j.jlumin.2014.01.029
[34]  Ivanov, I. and Stefanov, Y. (2002) Electroextraction of Zinc from Sulphate Electrolytes Containing Antimony Ions and Hydroxyethylated-Butyne-2-Diol-1, 4: Part 3. The In-fluence of Manganese Ions and a Divided Cell. Hydrometallurgy, 64, 188-186.
https://doi.org/10.1016/S0304-386X(02)00039-7
[35]  Chen, S., Chen, B.M., Wang, S.C., Yan, W.K., He, Y.P., Guo, Z.C. and Xu, R.D. (2020) Ag Doping to Boost the Electrochemical Performance and Corrosion Resistance of Ti/Sn–Sb-RuOx/α-PbO2/β-PbO2 Electrode in Zinc Electrowinning. Journal of Alloys and Compounds, 815, Article ID: 152551.
https://doi.org/10.1016/j.jallcom.2019.152551
[36]  An, H., Cui, H., Zhang, W.Y., Zhai, J.P., Qian, Y., Xie, X.C. and Li, Q. (2012) Fabrication and Electrochemical Treatment Application of a Microstructured TiO2-NTs/Sb-SnO2/PbO2 Anode in the Degradation of C.I. Reactive Blue 194 (RB 194). Chemical Engineering Journal, 209, 86-93.
https://doi.org/10.1016/j.cej.2012.07.089
[37]  Chen, J.M., Xia, Y.J. and Dai, Q.Z. (2015) Electrochemical Degradation of Chloramphenicol with a Novel Al Doped PbO2 Electrode: Performance, Kinetics and Degradation Mechanism. Electrochimica Acta, 165, 277-287.
https://doi.org/10.1016/j.electacta.2015.02.029
[38]  Li, H.X., Chen, Z., Yu, Q., Zhu, W. and Cui, W.R. (2018) Effects of Tungsten Carbide on the Electrocatalytic Activity of PbO2-WC Composite Inert Anodes during Zinc Electrowinning. Journal of the Electrochemical Society, 164, H1064.
https://doi.org/10.1149/2.0791714jes
[39]  Terezo, A.J. and Pereira, E.C. (1999) Preparation and Characteri-zation of Ti/RuO2-Nb2O5 Electrodes Obtained by Polymeric Precursor Method. Electrochimica Acta, 44, 4507-4513.
https://doi.org/10.1016/S0013-4686(99)00182-6
[40]  Krysa, J., Maixner, J., Mraz, R. and Rousar, I. (1998) Effect of Coating Thickness on the Properties of IrO2-Ta2O5 Anodes. Journal of Applied Electrochemistry, 28, 369-372.
https://doi.org/10.1023/A:1003284204458
[41]  Mattos-Costa, F.I., de Lima-Neto, P., Machado, S.A.S. and Avaca, L.A. (1998) Characterisation of Surfaces Modified by Sol-Gel Derived RuxIr1?xO2 Coatings for Oxygen Evolution in Acid Medium. Electrochimica Acta, 44, 1515-1523.
https://doi.org/10.1016/S0013-4686(98)00275-8
[42]  张招贤, 伍超群. lrO2?Ta2O5涂层钛阳极失效前后形貌的研究[J]. 广东有色金属学报, 2003, 13(1): 37-40.
[43]  Hu, J.M., Meng, H.M., Zhang, J.Q. and Cao, C.N. (2003) Degradation Mechanism of Long Service Life Ti/IrO2-Ta2O5 Oxide Anodes in Sulphuric Acid. Corrosion Science, 44, 1655-1668.
https://doi.org/10.1016/S0010-938X(01)00165-2
[44]  胡吉明, 张鉴清, 孟惠民. Ti基IrO2 + Ta2O5阳极在硫酸溶液中的电解失效行为[J]. 物理化学学报, 2002, 18(1): 14-20.
[45]  Comninellis, C. and Ver-cesi, G.P. (1991) Characterization of DSA?-Type Oxygen Evolving Electrodes: Choice of a Coating. Journal of Applied Electrochemistry, 21, 335-345.
https://doi.org/10.1007/BF01020219
[46]  梁振海, 王森, 孙彦平, 等. Ti/SnO2+Sb2O3/PbO2阳极的性能研究[J]. 电化学, 1995, 1(4): 456-460.
[47]  Dória, A.R., Santos, G.O.S., Pelegrinelli, M.M.S., Silva, D.C., de Matos, D.B., Cavalcanti, E.B., Silva, R.S., Salazar, B.G.R. and Eguiluz, K.I.B. (2020) Improved 4-Nitrophenol Removal at Ti/RuO2-Sb2O4-TiO2 Laser-Made Anodes. Environmental Science and Pollution Research International, 28, 23634-23646.
https://doi.org/10.1007/s11356-020-10451-6
[48]  Du, L., Wang, Y., Dai, S.J., Pei, J., Qin, S. and Hu, C.W. (2010) Comparative Study on the Catalytic Electrooxidative Abilities of RuOx-PdO-TiO2/Ti and RuOx-PdO/Ti Anode. Journal of Hazardous Materials, 185, 1596-1599.
https://doi.org/10.1016/j.jhazmat.2010.10.020
[49]  Liu, J., Wang, T. and Chen, B. (2019) Effect of Molar Ratio of Ruthenium and Antimony on Corrosion Mechanism of Ti/Sn-Sb RuOx Electrode for Zinc Electrowinning. Journal of the Electrochemical Society, 166, 798-803.
https://doi.org/10.1149/2.0511915jes
[50]  Hrussanova, A., Guerrini, E. and Trasatti, S. (2004) Thermally Prepared Ti/RhOx Electrodes IV: O2 Evolution in Acid Solution. Journal of Electroanalytical Chemistry, 564, 151-157.
https://doi.org/10.1016/j.jelechem.2003.10.032
[51]  Krysa, J. and Kule, L. (1996) Effect of Coating Thickness and Surface Treatment of Titaninum on the Properties of IrO2-Ta2O5 Anodes. Journal of Applied Elec-trochemistry, 26, 999-1005.
https://doi.org/10.1007/BF00242194
[52]  黄文沂, 南峰, 陈尧天. 改性二氧化铅阳极的研究[J]. 无机盐工业, 1993(5): 16-18.
[53]  王静毅, 胡熙恩. 脉冲电镀制备钛基二氧化铅电极[J]. 过程工程学报, 2003, 3(6): 540-543.
[54]  Dan, Y.Y., Sun, Y.Y., Lu, C., et al. (2019) Composite Electrodeposited PbO2/Co3O4 on a Ti Substrate as Positive Electrode Materials for a Hybrid Supercapacitor. Chinese Journal of Structural Chemistry, 38, 882-892.
https://doi.org/10.14102/j.cnki.0254-5861.2011-2178
[55]  衷水平, 赖延清, 蒋良兴, 田忠良, 李劼, 刘业翔. 锌电积新型阳极与电积新工艺研究进展[J]. 材料导报, 2008, 22(2): 86-89.
[56]  梁镇海, 王森, 孙彦平, 等. Ti/MnOx型阳极的中间层研究[J]. 贵州科学, 1994, 12(4): 33-36.
[57]  张招贤, 唐仁衡, 张建华. IrO2Ta2O5涂层钛阳极的研究和应用[J]. 广东有色金属学报, 2002, 12(2): 102-106.
[58]  陈振方, 蒋汉瀛. 有色金属电积新型阳极及其行为的研究[J]. 有色金属(冶炼部分), 1989, 20(3): 16-19.
[59]  吕彦玲, 邵光杰, 赵北龙, 吴伟. 稀土镧掺杂MnO2电极的制备及性能研究[J]. 中国稀土学报, 2009, 27(5): 652-656.
[60]  王雅琼. 含Sb-SnO2中间层的钛基金属氧化物电极的结构与性能研究[D]: [博士学位论文]. 南京: 南京理工大学, 2009.
[61]  Chen, X.M. and Chen, G.H. (2005) Stable Ti/RuO2-Sb2O5-SnO2 Electrodes for O2 Evolution. Electrochimica Acta, 50, 4155-4159.
https://doi.org/10.1016/j.electacta.2005.01.032
[62]  Zhao, W., Xing, J.T., Chen, D., et al. (2016) Electro-chemical Degradation of Musk Ketone in Aqueous Solutions Using a Novel Porous Ti/SnO2-Sb2O3/PbO2 Electrodes. Journal of Electroanalytical Chemistry, 775, 179-188.
https://doi.org/10.1016/j.jelechem.2016.05.050
[63]  Wang, B., Kong, W.P. and Ma, H.Z. (2007) Electro-chemical Treatment of Paper Mill Wastewater Using Three-Dimensional Electrodes with Ti/Co/SnO2-Sb2O5 Anode. Journal of Hazardous Materials, 146, 295-301.
https://doi.org/10.1016/j.jhazmat.2006.12.031
[64]  Mao, X.H., Tian, F., Gan, F.X., et al. (2008) Comparison of the Performance of Ti/SnO2-Sn, Ti/SnO2-Sb/PbO2, and Nb/BDD Anodes on Electrochemical Degradation of Azo Dye. Russian Journal of Electrochemistry, 44, 802-811.
https://doi.org/10.1134/S1023193508070069
[65]  郭晓亮, 周生刚, 张能锦. 等离子喷涂法制备Al/TiB2复合电极及电化学性能研究[J]. 材料导报, 2017, 31(6): 21-24.
[66]  李建业, 张文磊, 李廷鱼, 郭丽芳, 李刚. 不锈钢阳极氧化制备电极材料及其电化学性能[J]. 微纳电子技术, 2020, 57(9): 687-693.
[67]  金萌, 范腾, 张瀛宽, 李晓燕. 纳米纤维电极制备及电化学性能研究[J]. 天津纺织科技, 2022(3): 45-47.
[68]  王悦, 王显妮, 郭潜, 张存社, 黄捷, 李楚璇. 石墨烯基电极材料研究进展[J]. 合成材料老化与应用, 2022, 51(1): 108-109, 134.
[69]  李建朝, 齐素慈, 许继芳. Ni-ZrO2金属陶瓷电极材料的导电性能研究[J]. 中国陶瓷, 2021, 57(4): 9-14.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413