全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

流速对鱼类行为、生理和肌肉品质影响的研究进展
Research Progress on the Effects of Flow Velocity on Fish Behavior, Physiology and Muscle Quality

DOI: 10.12677/OJFR.2023.104017, PP. 140-151

Keywords: 流速,生长摄食,行为,消化代谢,营养品质
Flow Velocity
, Growth Feeding, Behavior, Digestion and Metabolism, Nutritional Quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

流速是鱼类养殖生产的重要影响因子,在养殖生产管理过程中起重要作用。在不同的流速条件下,鱼类表现出差异化的行为、生长表现、代谢和免疫应激等,这为集约化养殖模式中选择适宜流速环境提供了新思路。本文重点综述了不同流速对鱼类行为、生理和营养品质影响的系列研究,并试图揭示鱼类对不同流速的应答特征,以期为集约化养殖模式中选择适宜的流速提供理论参考。
Flow velocity is an important factor affecting fish production and plays an important role in the management of fish production. Under different flow rate conditions, fish exhibited differentiated behavior, growth performance, metabolic and immune stress, etc., which provided a new idea for selecting suitable flow rate environment in intensive culture mode. This paper focuses on a series of studies on the effects of different flow rates on the behavior, physiology and nutritional quality of fish, and attempts to reveal the characteristics of fish responses to different flow rates, in order to provide theoretical reference for the selection of appropriate flow rates in intensive culture mode.

References

[1]  任效忠, 王江竹, 薛博茹, 等. 方形圆弧角海水养殖池排污特性的试验研究[J]. 海洋环境科学, 2021, 40(5): 790-797.
[2]  车宗龙, 任效忠, 张倩. 循环水养殖系统中水动力特性及其与鱼类相互影响研究进展[J]. 大连海洋大学学报, 2021, 36(5): 886.
[3]  陈松波, 陈伟兴, 范兆廷. 鱼类呼吸代谢研究进展[J]. 水产学杂志, 2004, 17(1): 82.
[4]  Palstra, A.P. and Planas, J.V. (2011) Fish under Exercise. Fish Physiology and Biochemistry, 37, 259-272.
https://doi.org/10.1007/s10695-011-9505-0
[5]  王婕. 流速对工厂化养殖许氏平鲉(Sebastes schlegelii)生长、行为及代谢的影响研究[D]: [硕士学位论文]. 大连: 大连海洋大学, 2023.
[6]  Zhu, T., Yang, R., Xiao, R., et al. (2023) Effects of Flow Velocity on the Growth Performance, Antioxidant Activity, Immunity and Intestinal Health of Chinese Perch (Siniperca chuatsi) in Recirculating Aquaculture Systems. Fish & Shellfish Immunology, 138, Article ID: 108811.
https://doi.org/10.1016/j.fsi.2023.108811
[7]  柴若愚, 尹恒, 霍润明, 等. 水流速度对黑鲷和美国红鱼续航游泳能力及生理代谢的影响[J]. 水生生物学报, 2023, 47(5): 723-731.
[8]  Bugeon, J., Lefevre, F. and Fauconneau, B. (2003) Fillet Texture and Muscle Structure in Brown Trout (Salmo trutta) Subjected to Long-Term Exercise. Aquaculture Research, 34, 1287-1295.
https://doi.org/10.1046/j.1365-2109.2003.00938.x
[9]  Timmerhaus, G., Lazado, C.C., Cabillon, N.A.R., et al. (2021) The Optimum Velocity for Atlantic Salmon Post-Smolts in RAS Is a Compromise between Muscle Growth and Fish Welfare. Aquaculture, 532, Article ID: 736076.
https://doi.org/10.1016/j.aquaculture.2020.736076
[10]  王海珊. 游泳训练对异育银鲫“中科3号”肌肉品质与甲状腺激素代谢的影响[D]: [硕士学位论文]. 武汉: 华中农业大学, 2019.
[11]  钱振家, 徐金铖, 余友斌, 等. 水流对鱼类游泳行为和生理代谢的影响的研究进展[J]. 中国农学通报, 2022, 38(32): 133-138.
[12]  许亚琴, 吴立新, 陈炜, 等. 水流对鱼类生理生态学影响的研究进展[J]. 现代农业科技, 2020(4): 199-200.
[13]  Ibarz, A., Felip, O., Fernández-Borràs, J., et al. (2011) Sustained Swimming Improves Muscle Growth and Cellularity in Gilthead Sea Bream. Journal of Comparative Physiology B, 181, 209-217.
https://doi.org/10.1007/s00360-010-0516-4
[14]  Chen, Z., Ye, Z., Ji, M., et al. (2021) Effects of Flow Velocity on Growth and Physiology of Juvenile Largemouth Bass (Micropterus salmoides) in Recirculating Aquaculture Systems. Aquaculture Research, 52, 3093-3100.
https://doi.org/10.1111/are.15153
[15]  Shrivastava, J., Ra?kovi?, B., Blust, R., et al. (2018) Exercise Improves Growth, Alters Physiological Performance and Gene Expression in Common Carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 226, 38-48.
https://doi.org/10.1016/j.cbpa.2018.08.007
[16]  Li, X., Ji, L., Wu, L., et al. (2019) Effect of Flow Velocity on the Growth, Stress and Immune Responses of Turbot (Scophthalmus maximus) in Recirculating Aquaculture Systems. Fish & Shellfish Immunology, 86, 1169-1176.
https://doi.org/10.1016/j.fsi.2018.12.066
[17]  Crook, D.A., Buckle, D.J., Morrongiello, J.R., et al. (2020) Tracking the Resource Pulse: Movement Responses of Fish to Dynamic Floodplain Habitat in a Tropical River. Journal of Animal Ecology, 89, 795-807.
https://doi.org/10.1111/1365-2656.13146
[18]  Hoyt, D.F., Taylor, C.R. (1981) Gait and the Energetics of Locomotion in Horses. Nature, 292, 239-240.
https://doi.org/10.1038/292239a0
[19]  宋波澜, 林小涛, 王伟军, 等. 不同流速下红鳍银鲫趋流行为与耗氧率的变化[J]. 动物学报, 2008, 54(4): 686-694.
[20]  廖磊, 安瑞冬, 李嘉, 等. 齐口裂腹鱼趋流行为的水力学特性研究[J]. 水电能源科学, 2019, 37(5): 69-72.
[21]  张硕, 陈勇. 黑鲪幼鱼趋流性的初步研究[J]. 上海水产大学学报, 2005, 14(3): 282-287.
[22]  钟金鑫, 张倩, 李小荣, 等. 不同流速对鱇(鱼良)白鱼游泳行为的影响[J]. 生态学杂志, 2013, 32(3): 655-660.
[23]  董鹏. 菊黄东方鲀的游泳运动及对其呼吸排泄和非特异性免疫的影响[D]: [硕士学位论文]. 大连: 大连海洋大学, 2017.
[24]  李丹, 林小涛, 李想, 等. 水流对杂交鲟幼鱼游泳行为的影响[J]. 淡水渔业, 2008, 38(6): 46-51.
[25]  钟金鑫, 张倩, 李小荣. 流速对云南华鲮幼鱼游泳行为的影响[J]. 安徽农业科学, 2012, 40(35): 17137-17139.
[26]  何大仁. 俄国鱼类行为与感觉研究(I) [J]. 台湾海峡, 1996, 15(2): 191-199.
[27]  曹誉尹. 计算机视觉在观测量化鱼类行为中的研究[J]. 农业与技术, 2022, 42(17): 121-124.
[28]  袁喜, 涂志英, 韩京成, 等. 流速对细鳞裂腹鱼游泳行为及能量消耗影响的研究[J]. 水生生物学报, 2012, 36(2): 270-275.
[29]  Hockley, F.A., Wilson, C., Graham, N., et al. (2014) Combined Effects of Flow Condition and Parasitism on Shoaling Behaviour of Female Guppies Poecilia reticulata. Behavioral Ecology and Sociobiology, 68, 1513-1520.
https://doi.org/10.1007/s00265-014-1760-5
[30]  Lombana, D.A.B. and Porfiri, M. (2022) Collective Response of Fish to Combined Manipulations of Illumination and Flow. Behavioural Processes, 203, Article ID: 104767.
https://doi.org/10.1016/j.beproc.2022.104767
[31]  Kallberg, H. (1958) Observations in a Stream Tank of Territoriality and Competition in Juvenile Salmon and Trout. Report No. 39, Institute of Freshwater Research, Drottningholm, 55-98.
[32]  Filella, A., Nadal, F., Sire, C., et al. (2018) Model of Collective Fish Behavior with Hydrodynamic Interactions. Physical Review Letters, 120, Article ID: 198101.
https://doi.org/10.1103/PhysRevLett.120.198101
[33]  Petroff, A. and Libchaber, A. (2014) Hydrodynamics and Collective Behavior of the Tethered Bacterium Thiovulum majus. Proceedings of the National Academy of Sciences, 111, E537-E545.
https://doi.org/10.1073/pnas.1322092111
[34]  Leon, K.A. (1986) Effect of Exercise on Feed Consumption, Growth, Food Conversion, and Stamina of Brook Trout. The Progressive Fish-Culturist, 48, 43-46.
https://doi.org/10.1577/1548-8640(1986)48<43:EOEOFC>2.0.CO;2
[35]  Ohya, S., Simizu, T., Horikawa, Y., et al. (1991) Effect of Water Drawing System on Productivity and Body Composition of Cultured Ayu Plecoglossus altivelis. Aquaculture Science, 39, 1-8.
[36]  J?rgensen, E.H. and Jobling, M. (1994) Feeding and Growth of Exercised and Unexercised Juvenile Atlantic Salmon in Freshwater, and Performance after Transfer to Seawater. Aquaculture International, 2, 154-164.
https://doi.org/10.1007/BF00231512
[37]  Castro, V., Grisdale-Helland, B., Helland, S.J., et al. (2011) Aerobic Training Stimulates Growth and Promotes Disease Resistance in Atlantic Salmon (Salmo salar). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 160, 278-290.
https://doi.org/10.1016/j.cbpa.2011.06.013
[38]  Christiansen, J.S. and Jobling, M. (1990) The Behaviour and the Relationship between Food Intake and Growth of Juvenile Arctic Charr, Salvelinus alpinus L., Subjected to Sustained Exercise. Canadian Journal of Zoology, 68, 2185-2191.
https://doi.org/10.1139/z90-303
[39]  Nematipour, G.R. (1991) Effects of Water Velocities on Lipid Reserves in Ayu. Nippon Suisan Gakkaishi, 57, 1737-1741.
https://doi.org/10.2331/suisan.57.1737
[40]  Jobling, M., Baardvik, B.M., Christiansen, J.S., et al. (1993) The Effects of Prolonged Exercise Training on Growth Performance and Production Parameters in Fish. Aquaculture International, 1, 95-111.
https://doi.org/10.1007/BF00692614
[41]  Davison, W. (1997) The Effects of Exercise Training on Teleost Fish, a Review of Recent Literature. Comparative Biochemistry and Physiology Part A: Physiology, 117, 67-75.
https://doi.org/10.1016/S0300-9629(96)00284-8
[42]  Inoue, L.A.K.A., Hackbarth, A., Arberláez-Rojas, G., et al. (2019) Growth Performance and Metabolism of the Neotropical Fish Piaractus mesopotamicus under Sustained Swimming. Aquaculture, 511, Article ID: 734219.
https://doi.org/10.1016/j.aquaculture.2019.734219
[43]  East, P. and Magnan, P. (1987) The Effect of Locomotor Activity on the Growth of Brook Charr, Salvelinus fontinalis Mitchill. Canadian Journal of Zoology, 65, 843-846.
https://doi.org/10.1139/z87-134
[44]  Farrell, A.P., Johansen, J.A. and Suarez, R.K. (1991) Effects of Exercise-Training on Cardiac Performance and Muscle Enzymes in Rainbow Trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry, 9, 303-312.
https://doi.org/10.1007/BF02265151
[45]  Young, P.S. and Cech Jr., J.J. (1994) Optimum Exercise Conditioning Velocity for Growth, Muscular Development, and Swimming Performance in Young-of-the-Year Striped Bass (Morone saxatilis). Canadian Journal of Fisheries and Aquatic Sciences, 51, 1519-1527.
https://doi.org/10.1139/f94-151
[46]  Young, P.S. and Cech Jr., J.J. (1994) Effects of Different Exercise Conditioning Velocities on the Energy Reserves and Swimming Stress Responses in Young-of-the-Year Striped Bass (Morone saxatilis). Canadian Journal of Fisheries and Aquatic Sciences, 51, 1528-1534.
https://doi.org/10.1139/f94-152
[47]  Nilsen, A., Hagen, ?., Johnsen, C.A., et al. (2019) The Importance of Exercise: Increased Water Velocity Improves Growth of Atlantic Salmon in Closed Cages. Aquaculture, 501, 537-546.
https://doi.org/10.1016/j.aquaculture.2018.09.057
[48]  王婕, 张佳, 张旭, 李海霞, 胡雨, 马真. 不同流速对许氏平鲉生长及行为的影响[J]. 水生生物学报, 2023, 47(6): 973-981.
[49]  Fern?, A., et al. (2020) The Welfare of Fish. Springer International Publishing, Cham.
[50]  Balseiro, P., Moe, ?., Gamlem, I., et al. (2018) Comparison between Atlantic Salmon Salmo salar Post-Smolts Reared in Open Sea Cages and in the Preline Raceway Semi-Closed Containment Aquaculture System. Journal of Fish Biology, 93, 567-579.
https://doi.org/10.1111/jfb.13659
[51]  Ashley, P.J. (2007) Fish Welfare: Current Issues in Aquaculture. Applied Animal Behaviour Science, 104, 199-235.
https://doi.org/10.1016/j.applanim.2006.09.001
[52]  Morro, B., Davidson, K., Adams, T.P., et al. (2022) Offshore Aquaculture of Finfish: Big Expectations at Sea. Reviews in Aquaculture, 14, 791-815.
https://doi.org/10.1111/raq.12625
[53]  Nilsen, A., Nielsen, K.V. and Bergheim, A. (2020) A Closer Look at Closed Cages: Growth and Mortality Rates during Production of Post-Smolt Atlantic Salmon in Marine Closed Confinement Systems. Aquacultural Engineering, 91, Article ID: 102124.
https://doi.org/10.1016/j.aquaeng.2020.102124
[54]  Is-haak, J., Kaewnern, M., Yoonpundh, R., et al. (2019) Oxygen Consumption Rates of Hybrid Red Tilapia at Different Sizes during Challenge to Water Velocity. Journal of Fisheries and Environment, 43, 52-65.
[55]  Hvas, M. and Oppedal, F. (2017) Sustained Swimming Capacity of Atlantic salmon. Aquaculture Environment Interactions, 9, 361-369.
https://doi.org/10.3354/aei00239
[56]  Ogata, H.Y. and Oku, H. (2000) Effects of Water Velocity on Growth Performance of Juvenile Japanese Flounder Paralichthys olivaceus. Journal of the World Aquaculture Society, 31, 225-231.
https://doi.org/10.1111/j.1749-7345.2000.tb00357.x
[57]  Palstra, A.P., Tudorache, C., Rovira, M., et al. (2010) Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression. PLOS ONE, 5, e14483.
https://doi.org/10.1371/journal.pone.0014483
[58]  Davison, W. and Goldspink, G. (1978) The Effect of Training on the Swimming Muscles of the Goldfish (Carassius auratus). Journal of Experimental Biology, 74, 115-122.
https://doi.org/10.1242/jeb.74.1.115
[59]  Lemieux, H., Blier, P. and Dutil, J.D. (1999) Do Digestive Enzymes set a Physiological Limit on Growth Rate and Food Conversion Efficiency in the Atlantic Cod (Gadus morhua)? Fish Physiology and Biochemistry, 20, 293-303.
https://doi.org/10.1023/A:1007791019523
[60]  Hakim, Y., Uni, Z., Hulata, G., et al. (2006) Relationship between Intestinal Brush Border Enzymatic Activity and Growth Rate in Tilapias Fed Diets Containing 30% or 48% Protein. Aquaculture, 257, 420-428.
https://doi.org/10.1016/j.aquaculture.2006.02.034
[61]  赵璐琪, 宋波澜. 流速对吉富罗非鱼幼鱼行为和消化酶的影响[J]. 河北渔业, 2017(3): 21-23.
[62]  刘梅, 练青平, 倪蒙, 等. 池塘内循环流水养殖模式对大口黑鲈生长性能, 抗氧化酶, 消化酶及消化道组织结构和菌群的影响[J]. 水产学报, 2021, 45(12): 2011-2028.
[63]  李秀明. 运动训练对中华倒刺鲃幼鱼生长的影响及其机理研究[D]: [博士学位论文]. 重庆: 西南大学, 2013.
[64]  魏小岚. 运动训练影响尼罗罗非鱼(Oreochromis niloticus)蛋白质与糖类代谢及其营养需求的生理机制研究[D]: [博士学位论文]. 广州: 暨南大学, 2015.
[65]  Gruber, S.J. and Dickson, K.A. (1997) Effects of Endurance Training in the Leopard Shark, Triakis semifasciata. Physiological Zoology, 70, 481-492.
https://doi.org/10.1086/515851
[66]  Hinterleitner, S., Huber, M., Lackner, R., et al. (1992) Systemic and Enzymatic Responses to Endurance Training in Two Cyprinid Species with Different Life Styles (Teleostei: Cyprinidae). Canadian Journal of Fisheries and Aquatic Sciences, 49, 110-115.
https://doi.org/10.1139/f92-013
[67]  McClelland, G.B., Craig, P.M., Dhekney, K., et al. (2006) Temperature- and Exercise-Induced Gene Expression and Metabolic Enzyme Changes in Skeletal Muscle of Adult Zebrafish (Danio rerio). The Journal of Physiology, 577, 739-751.
https://doi.org/10.1113/jphysiol.2006.119032
[68]  Johnston, I.A. and Moon, T.W. (1980) Endurance Exercise Training in the Fast and Slow Muscles of a Teleost Fish (Pollachius virens). Journal of Comparative Physiology, 135, 147-156.
https://doi.org/10.1007/BF00691204
[69]  Johnston, I.A. and Moon, T.W. (1980) Exercise Training in Skeletal Muscle of Brook Trout (Salvelinus fontinalis). Journal of Experimental Biology, 87, 177-194.
https://doi.org/10.1242/jeb.87.1.177
[70]  Anttila, K., J?ntti, M. and M?ntt?ri, S. (2010) Effects of Training on Lipid Metabolism in Swimming Muscles of Sea Trout (Salmo trutta). Journal of Comparative Physiology B, 180, 707-714.
https://doi.org/10.1007/s00360-010-0446-1
[71]  Richards, J.G., Mercado, A.J., Clayton, C.A., et al. (2002) Substrate Utilization during Graded Aerobic Exercise in Rainbow Trout. Journal of Experimental Biology, 205, 2067-2077.
https://doi.org/10.1242/jeb.205.14.2067
[72]  Richards, J.G., Heigenhauser, G.J.F. and Wood, C.M. (2002) Lipid Oxidation Fuels Recovery from Exhaustive Exercise in White Muscle of Rainbow Trout. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 282, R89-R99.
https://doi.org/10.1152/ajpregu.00238.2001
[73]  Grisdale-Helland, B., Takle, H. and Helland, S.J. (2013) Aerobic Exercise Increases the Utilization Efficiency of Energy and Protein for Growth in Atlantic Salmon Post-Smolts. Aquaculture, 406, 43-51.
https://doi.org/10.1016/j.aquaculture.2013.05.002
[74]  许亚琴. 流速对拉氏鱥幼鱼生长, 非特异性免疫能力及脂肪酸组成的影响[D]: [硕士学位论文]. 大连: 大连海洋大学, 2020.
[75]  崔雅军. 肝酶与代谢综合征的相关性研究[J]. 中国社区医师, 2016, 32(20): 118-119.
[76]  刘经纬, 麦康森, 徐玮, 等. 谷氨酰胺对半滑舌鳎稚鱼非特异性免疫相关酶活力和低氧应激后 HIF-1α表达的影响[J]. 水生生物学报, 2016, 40(4): 736-743.
[77]  刘梅, 原居林, 练青平, 等. 不同流速对流水槽大口黑鲈生长性能, 抗氧化能力, 能量代谢及组织结构的影响[J]. 水生生物学报, 2023, 47(1): 25-36.
[78]  魏小岚, 虞顺年, 阳艳, 等. 运动强度对斜带石斑鱼生长, 非特异性免疫和肝脏抗氧化能力的影响[J]. 中国水产科学, 2017, 24(5): 1055-1064.
[79]  Azum, T., Noda, S., Yada, T., et al. (2002) Profiles in Growth, Smoltification, Immune Function and Swimming Performance of 1-Year-Old Masu Salmon Oncorhynchus masou Masou Reared in Water Flow. Fisheries Science, 68, 1282-1294.
https://doi.org/10.1046/j.1444-2906.2002.00566.x
[80]  Steinbacher, P. and Eckl, P. (2015) Impact of Oxidative Stress on Exercising Skeletal Muscle. Biomolecules, 5, 356-377.
https://doi.org/10.3390/biom5020356
[81]  Ji, L.L., Kang, C. and Zhang, Y. (2016) Exercise-Induced Hormesis and Skeletal Muscle Health. Free Radical Biology and Medicine, 98, 113-122.
https://doi.org/10.1016/j.freeradbiomed.2016.02.025
[82]  Li, X.M., Yuan, J.M., Fu, S.J., et al. (2016) The Effect of Sustained Swimming Exercise on the Growth Performance, Muscle Cellularity and Flesh Quality of Juvenile Qingbo (Spinibarbus sinensis). Aquaculture, 465, 287-295.
https://doi.org/10.1016/j.aquaculture.2016.09.021
[83]  Davison, W. and Goldspink, G. (1977) The Effect of Prolonged Exercise on the Lateral Musculature of the Brown Trout (Salmo trutta). Journal of Experimental Biology, 70, 1-12.
https://doi.org/10.1242/jeb.70.1.1
[84]  S?nger, A.M. (1992) Effects of Training on Axial Muscle of Two Cyprinid Species: Chondrostoma nasus (L.) and Leuciscus cephalus (L.). Journal of Fish Biology, 40, 637-646.
https://doi.org/10.1111/j.1095-8649.1992.tb02611.x
[85]  Martin, C.I. and Johnston, I.A. (2005) The Role of Myostatin and the Calcineurin-Signalling Pathway in Regulating Muscle Mass in Response to Exercise Training in the Rainbow Trout Oncorhynchus mykiss Walbaum. Journal of Experimental Biology, 208, 2083-2090.
https://doi.org/10.1242/jeb.01605
[86]  Shi, C., Wang, J., Yang, Z., et al. (2019) Sustained Swimming Training Is Associated with Reversible Filet Texture Changes of European Sea Bass (Dicentrarchus labrax L.). Frontiers in Physiology, 10, Article No. 725.
https://doi.org/10.3389/fphys.2019.00725
[87]  Hatae, K., Yoshimatsu, F. and Matsumoto, J.J. (1990) Role of Muscle Fibers in Contributing Firmness of Cooked Fish. Journal of Food Science, 55, 693-696.
https://doi.org/10.1111/j.1365-2621.1990.tb05208.x
[88]  Hurling, R., Rodell, J.B. and Hunt, H.D. (1996) Fiber Diameter and Fish Texture. Journal of Texture Studies, 27, 679-685.
https://doi.org/10.1111/j.1745-4603.1996.tb01001.x
[89]  Johnston, I.A., Alderson, R., Sandham, C., et al. (2000) Muscle Fibre Density in Relation to the Colour and Texture of Smoked Atlantic Salmon (Salmo salar L.). Aquaculture, 189, 335-349.
https://doi.org/10.1016/S0044-8486(00)00373-2
[90]  Kiessling, A., Higgs, D.A., Dosanjh, B.S., et al. (1994) Influence of Sustained Exercise at Two Ration Levels on Growth and Thyroid Function of All-Female Chinook Salmon (Oncorhynchus tshawytscha) in Seawater. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1975-1984.
https://doi.org/10.1139/f94-200
[91]  Johnston, I.A. (1999) Muscle Development and Growth: Potential Implications for Flesh Quality in Fish. Aquaculture, 177, 99-115.
https://doi.org/10.1016/S0044-8486(99)00072-1
[92]  Palstra, A.P., Mes, D., Kusters, K., et al. (2015) Forced Sustained Swimming Exercise at Optimal Speed Enhances Growth of Juvenile Yellowtail Kingfish (Seriola lalandi). Frontiers in Physiology, 5, Article No. 506.
https://doi.org/10.3389/fphys.2014.00506
[93]  Totland, G.K., Kryvi, H., J?dest?l, K.A., et al. (1987) Growth and Composition of the Swimming Muscle of Adult Atlantic Salmon (Salmo salar L.) during Long-Term Sustained Swimming. Aquaculture, 66, 299-313.
https://doi.org/10.1016/0044-8486(87)90115-3
[94]  李里特. 食品物性学[M]. 北京: 中国农业出版社, 2001.
[95]  Harimana, Y., Tang, X., Xu, P., et al. (2019) Effect of Long-Term Moderate Exercise on Muscle Cellularity and Texture, Antioxidant Activities, Tissue Composition, Freshness Indicators and Flavor Characteristics in Largemouth Bass (Micropterus salmoides). Aquaculture, 510, 100-108.
https://doi.org/10.1016/j.aquaculture.2019.05.051
[96]  胡芬, 李小定, 熊善柏, 等. 5种淡水鱼肉的质构特性及与营养成分的相关性分析[J]. 食品科学, 2011, 32(11): 69-73.
[97]  Rasmussen, R.S., Heinrich, M.T., Hyldig, G., et al. (2011) Moderate Exercise of Rainbow Trout Induces Only Minor Differences in Fatty Acid Profile, Texture, White Muscle Fibres and Proximate Chemical Composition of Fillets. Aquaculture, 314, 159-164.
https://doi.org/10.1016/j.aquaculture.2011.02.003
[98]  Zhu, Z., Song, B., Lin, X., et al. (2016) Effect of Sustained Training on Glycolysis and Fatty Acids Oxidation in Swimming Muscles and Liver in Juvenile Tinfoil Barb Barbonymus schwanenfeldii (Bleeker, 1854). Fish Physiology and Biochemistry, 42, 1807-1817.
https://doi.org/10.1007/s10695-016-0259-6
[99]  Periago, M.J., Ayala, M.D., López-Albors, O., et al. (2005) Muscle Cellularity and Flesh Quality of Wild and Farmed Sea Bass, Dicentrarchus labrax L. Aquaculture, 249, 175-188.
https://doi.org/10.1016/j.aquaculture.2005.02.047
[100]  吴亮. 光照对豹纹鳃棘鲈幼鱼栖息, 生长和肌肉营养成分的影响[D]: [硕士学位论文]. 上海: 上海海洋大学, 2016.
[101]  Feng, H., Peng, D., Liang, X.F., et al. (2022) Effect of Dietary Hydroxyproline Supplementation on Chinese Perch (Siniperca chuatsi) Fed with Fish Meal Partially Replaced by Fermented Soybean Meal. Aquaculture, 547, Article ID: 737454.
https://doi.org/10.1016/j.aquaculture.2021.737454
[102]  宋波澜, 林小涛, 许忠能. 逆流运动训练对多鳞四须鲃摄食, 生长和体营养成分的影响[J]. 水产学报, 2012, 36(1): 106-114.
[103]  Liu, G., Wu, Y., Qin, X., et al. (2018) The Effect of Aerobic Exercise Training on Growth Performance, Innate Immune Response and Disease Resistance in Juvenile Schizothorax prenanti. Aquaculture, 486, 18-25.
https://doi.org/10.1016/j.aquaculture.2017.12.006
[104]  Harimana, Y., Tang, X., Le, G., et al. (2018) Quality Parameters of Black Carp (Mylopharyngodon piceus) Raised in Lotic and Lentic Freshwater Systems. LWT, 90, 45-52.
https://doi.org/10.1016/j.lwt.2017.11.060
[105]  Mohanna, C. (2010) Effect of Continuous Water Movement on Growth and Body Composition of Juvenile Rabbitfish, Siganus rivulatus.
[106]  Rincón, L., Castro, P.L., álvarez, B., et al. (2016) Differences in Proximal and Fatty Acid Profiles, Sensory Characteristics, Texture, Colour and Muscle Cellularity between Wild and Farmed Blackspot Seabream (Pagellus bogaraveo). Aquaculture, 451, 195-204.
https://doi.org/10.1016/j.aquaculture.2015.09.016
[107]  Li, X.M., Yu, L.J., Wang, C., et al. (2013) The Effect of Aerobic Exercise Training on Growth Performance, Digestive Enzyme Activities and Postprandial Metabolic Response in Juvenile Qingbo (Spinibarbus sinensis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166, 8-16.
https://doi.org/10.1016/j.cbpa.2013.04.021
[108]  宋波澜. 水流因子对红鳍银鲫(Barbodes schwanenfeldi)游泳行为、生长和生理生态影响的研究[D]: [博士学位论文]. 广州: 暨南大学, 2008.
[109]  Grigorakis, K. (2007) Compositional and Organoleptic Quality of Farmed and Wild Gilthead Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax) and Factors Affecting It: A Review. Aquaculture, 272, 55-75.
https://doi.org/10.1016/j.aquaculture.2007.04.062
[110]  Yogata, H. and Oku, H. (2000) The Effects of Swimming Exercise on Growth and Wholebody Protein and Fat Contents of Fed and Unfed Fingerling Yellowtail. Fisheries Science, 66, 1100-1105.
https://doi.org/10.1046/j.1444-2906.2000.00175.x
[111]  Zhu, T., Yang, R., Xiao, R., et al. (2023) Effect of Swimming Training on the Flesh Quality in Chinese Perch (Siniperca chuatsi) and Its Relationship with Muscle Metabolism. Aquaculture, 577, Article ID: 739926.
https://doi.org/10.1016/j.aquaculture.2023.739926
[112]  Huang, X., Hegazy, A.M. and Zhang, X. (2021) Swimming Exercise as Potential Measure to Improve Flesh Quality of Cultivable Fish: A Review. Aquaculture Research, 52, 5978-5989.
https://doi.org/10.1111/are.15510
[113]  朱志明. 运动训练下多鳞四须鲃(Barbodes schwanenfeldi)肌肉和肝脏糖, 脂代谢研究[D]: [博士学位论文]. 广州: 暨南大学, 2014.
[114]  Kiessling, A., Pickova, J., Eales, J.G., et al. (2005) Age, Ration Level, and Exercise Affect the Fatty Acid Profile of Chinook Salmon (Oncorhynchus tshawytscha) Muscle Differently. Aquaculture, 243, 345-356.
https://doi.org/10.1016/j.aquaculture.2004.10.003

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133