全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Process Optimization and Modeling by Response Surface Methodology of Nitrite Electro-Reduction by Ti/RuO2 + IrO2 Electrode

DOI: 10.4236/ajac.2023.1412031, PP. 531-540

Keywords: Electrochemical Reduction, Water Treatment, Nitrite, Optimization, Modelling

Full-Text   Cite this paper   Add to My Lib

Abstract:

Electrochemical reduction is one of the most suitable methods for the treatment of highly nitrate-contaminated solutions. This work focuses on the optimization of parameters influencing the electrochemical denitrification of water by the Ti/RuO2 + IrO2 electrode. The methodological approach used consists in carrying out a series of electrolysis by scrutinizing the reaction selectivity according to the experimental conditions. For this study, the?\"\"?ions concentrations before and after electrolysis were determined by UV-vis absorption spectroscopy. The results of the process optimization showed that the electrochemical reduction of\"\"is efficient at neutral pH after 120 mn of electrolysis at -100 mA. In contrast to works found in the literature, this study highlighted the process modeling that could open interesting perspectives to develop new treatment methods of polluted waters.

References

[1]  Wang, Q. and Yang, Z. (2016) Industrial Water Pollution, Water Environment Treatment, and Health Risks in China. Environmental Pollution, 218, 358-365.
https://doi.org/10.1016/j.envpol.2016.07.011
[2]  Tran, T.K., Chiu, K.F., Lin, C.Y. and Leu, H.J. (2017) Electrochemical Treatment of Wastewater: Selectivity of the Heavy Metals Removal Process. International Journal of Hydrogen Energy, 42, 27741-27748.
https://doi.org/10.1016/j.ijhydene.2017.05.156
[3]  Picetti, R., Deeney, M., Pastorino, S., Miller, M.R., Shah, A., Leon, D.A., Dangour, A.D. and Green, R. (2022) Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environmental Research, 210, Article ID: 112988.
https://doi.org/10.1016/j.envres.2022.112988
[4]  Chen, B., Wang, M., Duan, M., Ma, X., Hong, J., Xie, F., Zhang, R. and Li, X. (2019) In Search of Key: Protecting Human Health and the Ecosystem from Water Pollution in China. Journal of Cleaner Production, 228, 101-111.
https://doi.org/10.1016/j.jclepro.2019.04.228
[5]  Mousavi, S.A., Mehralian, M., Khashij, M. and Ibrahim, S. (2018) Effect of Air Flow Rate and C/N Ratio on Biological Nitrogen Removal through the CANON Process Treating Reject Water. Environmental Technology, 39, 2891-2899.
https://doi.org/10.1080/09593330.2017.1369578
[6]  Ghernaout, D. and Elboughdiri, N. (2020) Electrochemical Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, 1-17.
https://doi.org/10.4236/oalib.1106020
[7]  Saravanan, A., Kuma, P.S., Varjani, S., Karishma, S., Jeevanantham S. and Yaashika, P.R. (2021) Effective Removal of Cr(VI) Ions from Synthetic Solution Using Mixed Biomasses: Kinetic, Equilibrium and Thermodynamic Study. Journal of Water Process Engineering, 40, Article ID: 101905.
https://doi.org/10.1016/j.jwpe.2020.101905
[8]  Khanal, S.K., Varjan, I.S. and Awasthi, M.K. (2020) Waste-to-Resources: Opportunities and Challenges. Bioresource Technology, 317, Article ID: 123987.
https://doi.org/10.1016/j.biortech.2020.123987
[9]  Dimé, A.K.D., Diouf, G., Sarr, M.M. and Fall, M. (2020) Caractérisation Physico-Chimique de la Nappe Phréatique Située dans une Zone à Forte Pollution Industrielle: Cas de la Commune de Rufisque. Revue Ivoirienne des Sciences et Technologie, 35, 163-174.
[10]  Ağca, N., Karanlık, S. and Ödemiş, B. (2014) Assessment of Ammonium, Nitrate, Phosphate, and Heavy Metal Pollution in Groundwater from Amik Plain, Southern Turkey. Environmental Monitoring and Assessment, 186, 5921-5934.
https://doi.org/10.1007/s10661-014-3829-z
[11]  Choomyen, P.B., Muangmeesri, B. and Maneetham, D. (2022) Management of Water Treatment Systems Automatically via the Internet of Things. Engineering, 14, 385-397.
https://doi.org/10.4236/eng.2022.149030
[12]  Zongo, I., Leclerc, J.P., Maiga, H.A., Wethe, J. and Lapicque, F. (2009) Removal of Hexavalent Chromium from Industrial Wastewater by Electrocoagulation: A Comprehensive Comparison of Aluminium and Iron Electrodes. Separation and Purification Technology, 66, 159-166.
https://doi.org/10.1016/j.seppur.2008.11.012
[13]  Florke, M., Kynast, E., Barlund, I., Eisner, S., Wimmer, F. and Alcamo, J. (2013) Domestic and Industrial Water Uses of the Past 60 Years as a Mirror of Socio-Economic Development: A Global Simulation Study. Global Environmental Change, 23, 144-156.
https://doi.org/10.1016/j.gloenvcha.2012.10.018
[14]  Dimé, A.K.D., Diouf, G., Dramé, E.T. and Fall, M. (2018) Caractérisation Physico-Chimique de la Nappe Phréatique Située dans une Zone à Forte Pollution Industrielle: Cas de la Commune de Ngoundiane. Journal de la Société Ouest-Africaine de Chimie, 46, 23-28.
[15]  Aydın, A., Ercan, O. and Tascioglu, S. (2005) A Novel Method for the Spectrophotometric Determination of Nitrite in Water. Talanta, 66, 1181-1186.
https://doi.org/10.1016/j.talanta.2005.01.024
[16]  Umar, A.S. and Iqbal, M. (2007) Nitrate Accumulation in Plants, Factors Affecting the Process, and Human Health Implications. A Review. Agronomy for Sustainable Development, 27, 45-57.
https://doi.org/10.1051/agro:2006021
[17]  Yang, H. and Cheng, H. (2007) Controlling Nitrite Level in Drinking Water by Chlorination and Chloramination. Separation and Purification Technolonogy, 56, 392-396.
https://doi.org/10.1016/j.seppur.2007.05.036
[18]  Zhou, Y., Oehmen, A., Lim, M., Vadivelu, V. and Ng, W.J. (2011) The Role of Nitrite and Free Nitrous Acid (FNA) in Wastewater Treatment Plants. Water Research, 45, 4672-4682.
https://doi.org/10.1016/j.watres.2011.06.025
[19]  Ianoul, A., Coleman, T. and Asher, S.A. (2002) UV Resonance Raman Spectroscopic Detection of Nitrate and Nitrite in Wastewater Treatment Processes. Analytical Chemistry, 74, 1458-1461.
https://doi.org/10.1021/ac010863q
[20]  Santana, M.M.D., Zanoelo, E.F., Beninca, C. and. Freire, F.B. (2018) Electrochemical Treatment of Wastewater from a Bakery Industry: Experimental and Modeling Study. Process Safety and Environmental Protection, 116, 685-692.
https://doi.org/10.1016/j.psep.2018.04.001
[21]  Diouf, G., Dimé, A.K.D., Boye, M.B. and Baldé, I. (2022) Optimisation des Paramètres Influençant le Rendement de la Dénitrification Electrochimique de l’Eau par l’Electrode de Ti/RuO2 + IrO2. Afrique Science, 20, 1-10.
[22]  Baldé, I., Dimé, A.K.D. and Kane, C. (2023) Production Electrochimique de la Soude: Optimisation et Modélisation du Procédé par la Méthodologie de Surface de Réponse. Afrique Science, 22, 29-41.
[23]  Auta, M. (2012) Optimization of Tea Waste Activated Carbon Preparation Parameters for Removal of Cibacron Yellow Dye from Textile Waste Waters. International Journal of Advanced Engineering Research and Studies, 1, 50-56.
[24]  Gebresemati, M., Gabbiye, N. and Sahu, O. (2017) Sorption of Cyanide from Aqueous Medium by Coffee Husk: Response Surface Methodology. Journal of Applied Research and Technology, 15, 27-35.
https://doi.org/10.1016/j.jart.2016.11.002
[25]  Elmoubarki, R., Taoufik, M., Moufti, A., Tounsadi, H., Mahjoubi, F.Z., Bouabi, Y., Qourzal, S., Abdennouri, M. and Barka, N. (2017) Box-Behnken Experimental Design for the Optimization of Methylene Blue Adsorption onto Aleppo Pine Cones. Journal of Materials and Environmental Sciences, 8, 2184-2191.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133