全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Planck Scale Fluid Mechanics: Measuring the Planck Length from Fluid Mechanics Independent of G

DOI: 10.4236/ojfd.2023.135019, PP. 250-261

Keywords: Planck Length, Hydrostatic Pressure, Pascal’s Law, Gravity, Planck Fluid

Full-Text   Cite this paper   Add to My Lib

Abstract:

We demonstrate how to extract the Planck length from hydrostatic pressure without relying on any knowledge of Newton’s gravitational constant, G. By measuring the pressure from a water column, we can determine the Planck length without requiring knowledge of either G or the Planck constant. This experiment is simple to perform and cost-effective, making it not only of interest to researchers studying gravity but also suitable for low-budget educational settings. Despite its simplicity, this has never been demonstrated to be possible before, and it is achievable due to new theoretical insights into gravity and its connection to quantum gravity and the Planck scale. This provides new insights into fluid mechanics and the Planck scale. We are also exploring initial concepts related to what we are calling “Planck fluid”, which could potentially play a central role in quantum gravity and quantum fluid mechanics.

References

[1]  Granger, R.A. (1995) Fluid Mechanics. Dover, New York.
[2]  Planck, M. (1899) Natuerliche Masseinheiten. Der Koniglich Preussischen Akademie Der Wissenschaften, Berlin.
https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up
[3]  Planck, M. (1906) Vorlesungen über die Theorie der Warmestrahlung [The Theory of Radiation]. Dover, Leipzig.
[4]  Cahill, K. (1984) The Gravitational Constant. Lettere al Nuovo Cimento, 39, 181-184.
https://doi.org/10.1007/BF02790586
[5]  Cahill, K. (1984) Tetrads, Broken Symmetries, and the Gravitational Constant. Zeitschrift Für Physik C Particles and Fields, 23, 353-356.
https://doi.org/10.1007/BF01572659
[6]  Cohen, E.R. (1987) Fundamental Physical Constants. In:de Sabbata, V. and Melniko, V.N., Eds., Gravitational Measurements, Fundamental Metrology and Constants, Kluwer Academic Publishers, Amsterdam, 59.
[7]  Haug, E.G. (2020) Finding the Planck Length Multiplied by the Speed of Light without Any Knowledge of G, c, or h, Using a Newton Force Spring. Journal Physics Communication, 4, Article ID: 075001.
https://doi.org/10.1088/2399-6528/ab9dd7
[8]  Haug, E.G. (2022) Planck Units Measured Totally Independently of Big G. Open Journal of Microphysics, 12, 55-85.
https://doi.org/10.4236/ojm.2022.122004
[9]  Compton, A.H. (1923) A Quantum Theory of the Scattering of x-Rays by Light Elements. Physical Review, 210, 483-502.
https://doi.org/10.1103/PhysRev.21.483
[10]  Haug, E.G. (2022) Extraction of the Planck Length from Cosmological Redshift without Knowledge off G or . International Journal of Quantum Foundation, 4, 1-19.
https://ijqf.org/archives/6599
[11]  Haug, E.G. (2016) Planck Quantization of Newton and Einstein Gravitation. International Journal of Astronomy and Astrophysics, 60, 206-217.
https://doi.org/10.4236/ijaa.2016.62017
[12]  Haug, E.G. (2023) Different Mass Definitions and Their Pluses and Minuses Related to Gravity. Foundations, 3, 199-219.
https://doi.org/10.3390/foundations3020017
[13]  Einstein, A. (1916) Naherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften, Berlin.
[14]  Einstein, A. (1916) Die grundlage der allgemeinen relativitatstheorie. Annalen der Physics, 354, 769-822.
https://doi.org/10.1002/andp.19163540702
[15]  Unnikrishnan, C.S. and Gillies, G.T. (2011) Standard and Derived Planck Quantities: Selected Analysis and Derivations. Gravitation and Cosmology, 73, 339-343.
https://doi.org/10.1134/S0202289311040037
[16]  Harrison, E.R. (1970) Fluctuations at the Threshold of Classical Cosmology. Physical Review D, 1, 2726-2730.
https://doi.org/10.1103/PhysRevD.1.2726
[17]  Haug, E.G. (2022) Unified Quantum Gravity Field Equation Describing the Universe from the Smallest to the Cosmological Scales. Physics Essays, 35, 61-71.
https://doi.org/10.4006/0836-1398-35.1.61
[18]  Eddington, A.S. (1918) Report on the Relativity Theory of Gravitation. Fleetway Press, London.
[19]  Kiefer, C. (2023) Quantum Gravity—A Unfinished Revoluition.
https://arxiv.org/pdf/2302.13047.pdf
[20]  Haug, E.G. (2023) Quantized Newton and General Relativity Theory Gives Probabilisitic Quantum Gravity.
https://doi.org/10.20944/preprints202309.1399.v1
[21]  Graff, G., Kalinowsky, H. and Traut, J. (1980) A Direct Determination of the Proton Electron Mass Ratio. Zeitschrift für Physik A Atoms and Nuclei, 2970, 35-39.
https://link.springer.com/article/10.1007/BF01414243
https://doi.org/10.1007/BF01414243
[22]  Van-Dyck, R.S., Moore, F.L., Farnham, D.L. and Schwinberg, P.B. (1985) New Measurement of the Proton-Electron Mass Ratio. International Journal of Mass Spectrometry and Ion Processes, 66, 327-337.
https://doi.org/10.1016/0168-1176(85)80006-9
[23]  Levitt, L.S. (1958) The Proton Compton Wavelength as the ‘Quantum’ of Length. Experientia, 14, 233-234.
https://doi.org/10.1007/BF02159173
[24]  Trinhammer, O.L. and Bohr, H.G. (2019) On Proton Charge Radius Definition. EPL, 128, Article ID: 21001.
https://doi.org/10.1209/0295-5075/128/21001
[25]  Becker, P. and Bettin, H. (2011) The Avogadro Constant: Determining the Number of Atoms in a Single-Crystal 28Si Sphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3925-3935.
https://doi.org/10.1098/rsta.2011.0222
[26]  Becker, P. (2012) The New Kilogram Definition Based on Counting the Atoms in a 28Si Crystal. Contemporary Physics, 53, 461-479.
https://doi.org/10.1080/00107514.2012.746054
[27]  Massam, E. and Mana, G. (2016) Counting Atoms. Nature Physics, 12, Article No. 522.
https://doi.org/10.1038/nphys3754
[28]  Bartl, G., et al. (2017) A New 28Si Single Crystal: Counting the Atoms for the New Kilogram Definition. Metrologica, 54, 693-715.
[29]  Wang, O., Toikkanen, Z.W., Yin, F., Li, Z.Y., Quinn, B.M. and Palmer, R.E. (2010) Counting the Atoms in Supported, Monolayer-Protected Gold Clusters. Journal of the American Chemical Society, 132, 2854-2855.
https://doi.org/10.1021/ja909598g

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133