全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Artificial Fog in the PAVIN Fog and Rain Platform: In Search of Big Droplets Fog

DOI: 10.4236/acs.2024.141003, PP. 42-61

Keywords: Fog, Physical Simulation, Droplets Size Distribution, Meteorological Optical Range

Full-Text   Cite this paper   Add to My Lib

Abstract:

In fog, visibility is reduced. This reduction in visibility is measured by the meteorological optical range (MOR), which is important for studying human perception and various sensors in foggy conditions. The Cerema PAVIN Fog & Rain platform is capable of producing calibrated fog in order to better analyses it and understand its consequences. The problem is that the droplets produced by the platform are not large enough to resemble real fog. This can have a major impact on measurements since the interaction between electromagnetic waves and fog depends on the wavelength and diameter of the droplets. To remedy this, Cerema is building a new platform with new equipment capable of generating fog. This study analyses different nozzles and associated usage parameters such as the type of water used and the pressure used. The aim is to select the best nozzle with the associated parameters for producing large-diameter droplets and therefore more realistic fog.

References

[1]  Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bendix, J., et al. (2007) Fog Research: A Review of Past Achievements and Future Perspectives. Pure and Applied Geophysics, 164, 1121-1159.
https://doi.org/10.1007/978-3-7643-8419-7_3
[2]  Duthon, P., Bernardin, F., Chausse, F. and Colomb, M. (2017) Benchmark for the Robustness of Image Features in Rainy Conditions. Journal of Machine Vision and Application, 29, 915-927.
https://doi.org/10.1007/s00138-018-0945-8
[3]  Jung, S., Qin, X. and Oh, C. (2019) A Risk-Based Systematic Method for Identifying Fog-Related Crash Prone Locations. Applied Spatial Analysis and Policy, 12, 729-751.
[4]  World Meteorological Organization (2021) Guide to Instruments and Methods of Observation. WMO No. 8.
[5]  Tardif, R. and Rasmussen, R. (2008) Process-Oriented Analysis of Environmental Conditions Associated with Precipitation Fog Events in the New York City Region. Journal of Applied Meteorology and Climatology, 47, 1681-1703.
https://doi.org/10.1175/2007JAMC1734.1
[6]  Colomb, M., Duthon, P. and Laukkanen, S. (2017) Deliverable D 2.1: Characteristics of Adverse Weather Conditions.
[7]  Boudala, F.S., Wu, D., Isaac, G.A. and Gultepe, I. (2022) Seasonal and Microphysical Characteristics of Fog at a Northern Airport in Alberta, Canada. Remote Sensing, 14, Article No. 4865.
https://doi.org/10.3390/rs14194865
[8]  Kunkel, B.A. (1982) Microphysical Properties of Fog at Otis AFB.
[9]  George, J.B., Isaac, A. and Beale, S. (2020) Characterizing and Predicting Marine Fog Offshore Newfoundland and Labrador. Weather and Forecasting, 35, 347-365.
[10]  Duthon, P., Colomb, M. and Bernardin, F. (2020) Fog Classification by Their Droplet Size Distributions. Application to the Characterization of Cerema’s Platform. Atmosphere, 11, Article No. 596.
https://doi.org/10.3390/atmos11060596
[11]  Duthon, P., Colomb, M. and Bernardin, F. (2019) Light Transmission in Fog: The Influence of Wavelength on the Extinction Coefficient. Applied Sciences, 9, Article No. 2843.
https://doi.org/10.3390/app9142843
[12]  Haeffelin, M., Bergot, T., Elias, T., Tardif, R., et al. (2010) Parisfog: Shedding New Light on Fog Physical Processes. Bulletin of the American Meteorological Society, 91, 767-783.
https://doi.org/10.1175/2009BAMS2671.1
[13]  Elias, T., Dupont, J.C., Hammer, E., Hoyle, C.R., Haeffelin, M., Burnet, F. and Jolivet, D. (2015) Enhanced Extinction of Visible Radiation Due to Hydrated Aerosols in Mist and Fog. Atmospheric Chemistry and Physics Discussions, 15, 291-337.
https://doi.org/10.5194/acpd-15-291-2015
[14]  Colomb, M., Bernardin, F. and Morange, P. (2008) Paramétrisation de la visibilité et modelisation de la distribution granulométrique à partir de données microphysiques.
[15]  Duminil (2022) Restauration de la visibilité dans des images et desvidéos acquises en conditions météorologiques défavorables.
[16]  Liandrat, S., Duthon, P., Bernardin, F., Ben Daoued, A. and Bicard, J.-L. (2022) A Review of Cerema PAVIN Fog & Rain Platform: From Past and Back to the Future. ITS World Congress, Los Angeles, 18-22 september 2022.
[17]  Blanchard, E. (2011) Modélisation de l’interaction entre un brouillard d’eau et un feu en tunnel.
[18]  Grisso, R.D., Askew, S.D., McCall, D.S., et al. (2019) Nozzles: Selection and Sizing.
https://doi.org/10.21061/442-032_BSE-262P
[19]  Fedak, W., Ulbrich, R., Ligus, G., Wasilewski, M., Kołodziej, S., Wasilewska, B., Ochowiak, M., Włodarczak, S., Krupińska, A. and Pavlenko, I. (2021) Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus. Energies, 14, Article No. 4280.
https://doi.org/10.3390/en14144280
[20]  Chaker, M., Meher-Homji, C.B. and Mee III, T. (2004) Inlet Fogging of Gas Turbine Engines—Part II: Fog Droplet Sizing Analysis, Nozzle Types, Measurement, and Testing. Journal of Engineering for Gas Turbines and Power, 126, 559-570.
https://doi.org/10.1115/1.1712982
[21]  Serezat, L. (1997) Contribution a la qualification des salles de brouillards comme outils pour l’evaluation de la visibilite de la signalisation routiere.
[22]  Colomb, M., Dufour, J., Hirech, M., Lacôte, P., Morange, P. and Boreux, J. (2004) Innovative Artificial Fog Production Device, a Technical Facility for Research Activities.
[23]  Colomb, M., Hirech, K., André, P., Boreux, J.J., Lacôte, P. and Dufour, J. (2008) An Innovative Artificial Fog Production Device Improved in the European Project “FOG”. Atmospheric Research, 87, 242-251.
https://doi.org/10.1016/j.atmosres.2007.11.021
[24]  Ivanov, O., Todorov, P. and Gultepe, I. (2020) Investigations on the Influence of Chemical Compounds on Fog Microphysical Parameters. Atmosphere, 11, Article No. 225.
https://doi.org/10.3390/atmos11030225
[25]  Ferguson, J.C., O’Donnell, C.C., Chauhan, B.S., Adkins, S.W., Kruger, G.R., Wang, R., Ferreira, P.H.U. and Hewitt, A.J. (2015) Determining the Uniformity and Consistency of Droplet Size across Spray Drift Reducing Nozzles in a Wind Tunnel. Crop Protection, 76, 1-6.
https://doi.org/10.1016/j.cropro.2015.06.008
[26]  Butts, T.R., Butts, L.E., Luck, J.D., Fritz, B.K., Hoffmann, W.C. and Kruger, G.R. (2019) Droplet Size and Nozzle Tip Pressure from a Pulse-Width Modulation Sprayer. Biosystems Engineering, 178, 52-69.
https://doi.org/10.1016/j.biosystemseng.2018.11.004

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133