全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

外加电场对空位缺陷下硫硒化钼/石墨烯异质结构的电子性质调控
Regulation of the Electronic Properties of the MoSSe/Graphene Heterostructure under Vacancy Defects by the Applied Electric Field

DOI: 10.12677/JAPC.2024.131001, PP. 1-7

Keywords: 第一性原理,异质结构,外加电场,电子性质
First Principles
, Heterostructure, The Applied Electric Field, Electronic Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文构建了四种由Janus MoSSe和Graphene垂直堆垛而成的含缺陷异质结构。基于密度泛函理论的第一性原理计算方法研究了外加电场对空位缺陷下Janus MoSSe/Grahene异质结构电子性质的影响。研究发现S空位缺陷下的SMoSe/Graphene异质结构在电场的作用下可以改变其掺杂类型,最高能够达到1.176 × 1013 cm?2的n-type掺杂密度。SeMoS/Graphene的S和Se空位缺陷结构在电场作用下能分别达到1.488 × 1013 cm?2和1.555 × 1013 cm?2的载流子掺杂密度,并且施加反向的电场能够完全抑制掺杂的产生。
In this paper, four defective heterostructures composed of Janus MoSSe and Graphene vertical stacking are constructed. The effect of the applied electric field on the electronic properties of the Janus MoSSe/Grahene heterostructure under vacancy defects is studied by the first-principles calculation method based on density functional theory. It is found that the SMoSe/Graphene heterostructure under the S vacancy defect can change its doping type under the action of electric field, and the maximum n-type doping density of 1.176 × 1013 cm?2 can be reached. The S and Se vacancy defect structures of SeMoS/Graphene can reach the carrier doping density of 1.488 × 1013 cm?2 and 1.555 × 1013 cm?2 respectively under the action of electric field, and the application of the opposite electric field can completely inhibit the generation of doping.

References

[1]  Sangwan, V.K. and Hersam, M.C. (2018) Electronic Transport in Two-Dimensional Materials. Annual Review of Physical Chemistry, 69, 299-325.
https://doi.org/10.1146/annurev-physchem-050317-021353
[2]  Taft, E.A. and Philipp, H.R. (1965) Optical Properties of Graphite. Physical Review, 138, A197.
https://doi.org/10.1103/PhysRev.138.A197
[3]  Duerloo, K.N., Ong, M.T. and Reed, E.J. (2012) Intrinsic Piezoelectricity in Two-Dimensional Materials. Journal of Physical Chemistry Letters, 3, 2871-2876.
https://doi.org/10.1021/jz3012436
[4]  Liu, L., Feng, Y.P. and Shen, Z.X. (2003) Structural and Electronic Properties of h-BN. Physical Review B, 68, Article ID: 104102.
https://doi.org/10.1103/PhysRevB.68.104102
[5]  Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Zhou, X., Gu, C.D., Yuan, K.D., Li, Z. and Chen, W. (2016) Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. Nano Letters, 16, 4903-4908.
https://doi.org/10.1021/acs.nanolett.6b01459
[6]  Wang, Q., Kalantar-Zadeh, K., Kis, A., et al. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotech, 7, 699-712.
https://doi.org/10.1038/nnano.2012.193
[7]  Guan, Z. and Ni, S. (2020) Predicted 2D Ferromagnetic Janus VSeTe Monolayer with High Curie Temperature, Large Valley Polarization and Magnetic Crystal Anisotropy. Nanoscale, 12, 22735-22742.
https://doi.org/10.1039/D0NR04837B
[8]  Ju, L., Bie, M., Tang, X., Shang, J. and Kou, L. (2020) Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 12, 29335-29343.
https://doi.org/10.1021/acsami.0c06149
[9]  Cui, Z., Bai, K., Ding, Y., Wang, X., Li, E. and Zheng, J. (2020) Janus XSSe/SiC (X = Mo, W) van der Waals Heterostructures as Promising Water-Splitting Photocatalysts. Physica E: Low-Dimensional Systems and Nanostructures, 123, Article ID: 114207.
https://doi.org/10.1016/j.physe.2020.114207
[10]  Ma, X., Wu, X., Wang, H. and Wang, Y. (2018) A Janus MoSSe Monolayer: A Potential Wide Solar-Spectrum Water-Splitting Photocatalyst with a Low Carrier Recombination Rate. Journal of Materials Chemistry A, 6, 2295-2301.
https://doi.org/10.1039/C7TA10015A
[11]  Ren, K., Wang, S., Luo, Y., Chou, J.P., Yu, J., Tang, W. and Sun, M. (2020) High-Efficiency Photocatalyst for Water Splitting: A Janus MoSSe/XN (X = Ga, Al) van der Waals Heterostructure. Journal of Physics D: Applied Physics, 53, Article ID: 185504.
https://doi.org/10.1088/1361-6463/ab71ad
[12]  Hu, T., Jia, F., Zhao, G., Wu, J., Stroppa, A. and Ren, W. (2018) Intrinsic and Anisotropic Rashba Spin Splitting in Janus Transition-Metal Dichalcogenide Monolayers. Physical Review B, 97, Article ID: 235404.
https://doi.org/10.1103/PhysRevB.97.235404
[13]  Tang, X. and Kou, L. (2022) 2D Janus Transition Metal Dichalcogenides: Properties and Applications. Physica Status Solidi (B), 259, Article ID: 2100562.
https://doi.org/10.1002/pssb.202100562
[14]  Yuan, H., Su, J., Zhang, P., Lin, Z., Zhang, J., Zhang, J., Chang, J. and Hao, Y. (2021) Tuning the Intrinsic Electric Field of Janus-TMDs to Realize High-Performance β-Ga2O3 Device Based on β-Ga2O3/Janus-TMD Heterostructures. Materials Today Physics, 21, Article ID: 100549.
https://doi.org/10.1016/j.mtphys.2021.100549
[15]  Jin, C., Tang, X., Tan, X., Smith, S.C., Dai, Y. and Kou, L. (2019) A Janus MoSSe Monolayer: A Superior and Strain-Sensitive Gas Sensing Material. Journal of Materials Chemistry A, 7, 1099-1106.
https://doi.org/10.1039/C8TA08407F
[16]  Chaurasiya, R. and Dixit, A. (2019) Defect Engineered MoSSe Janus Monolayer as a Promising Two Dimensional Material for NO2 and NO Gas Sensing. Applied Surface Science, 490, 204-219.
https://doi.org/10.1016/j.apsusc.2019.06.049
[17]  Idrees, M., Din, H., Ali, R., Rehman, G., Hussain, T., Nguyen, C., Ahmad, I. and Amin, B. (2019) Optoelectronic and Solar Cell Applications of Janus Monolayers and Their van der Waals Heterostructures. Physical Chemistry Chemical Physics, 21, 18612-18621.
https://doi.org/10.1039/C9CP02648G
[18]  Freysoldt, C. and Neugebauer, J. (2018) First-Principles Calculations for Charged Defects at Surfaces, Interfaces, and Two-Dimensional Materials in the Presence of Electric Fields. Physical Review B, 97, Article ID: 205425.
https://doi.org/10.1103/PhysRevB.97.205425
[19]  Deng, S., Li, L. and Rees, P. (2019) Graphene/MoXY Heterostructures Adjusted by Interlayer Distance, External Electric Field, and Strain for Tunable Devices. ACS Applied Nano Materials, 2, 3977-3988.
https://doi.org/10.1021/acsanm.9b00871
[20]  Wang, Y., Chen, R., Luo, X., Liang, Q., Wang, Y. and Xie, Q. (2022) First-Principles Calculations on Janus MoSSe/ Graphene van der Waals Heterostructures: Implications for Electronic Devices. ACS Applied Nano Materials, 5, 8371- 8381.
https://doi.org/10.1021/acsanm.2c01478
[21]  Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
[22]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133