全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NaF-AlF3-LiF/KF熔盐体系的分子动力学势参数拟合研究
Study on Molecular Dynamics Potential Parameters of NaF-AlF3-LiF/KF Molten Salt System

DOI: 10.12677/MEng.2023.104012, PP. 102-111

Keywords: 势参数拟合,NaF-AlF3-LiF/KF熔盐,分子动力学模拟,对势拟合,力匹配
Potential Parameter Fitting
, NaF-AlF3-LiF/KF Molten Salt, Molecular Dynamics Simulation, Potential Fitting, Force Matching

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于我国北方地区铝土矿提取的氧化铝中含有钾、锂,导致我国铝电解质富含KF和LiF,使得电解质组分和物理化学特性发生变化。为此,本文采用对势拟合和力匹配相结合的方法,拟合得到了高精度的NaF-AlF3-LiF/KF熔盐体系Born-Mayer-Huggins势参数,获得的势参数对微观粒子受力的拟合平均偏差方为0.0796,对密度和粘度等宏观性质计算偏差小于5%,表明其适用于NaF-AlF3-LiF/KF基电解质微观结构和宏观性质的模拟计算研究。
Due to the presence of potassium and lithium in the alumina extracted from bauxite in northern China, aluminum electrolytes in China are rich in KF and LiF, resulting in changes in electrolyte composition and physicochemical properties. In this paper, the Born-Mayer-Huggins potential parameters of the NaF-AlF3-LiF/KF molten salt system were obtained by using the method of pairing potential fitting and force matching. The average deviation square of the obtained potential parameters for fitting the forces on microscopic particles is 0.0796, and the calculated devi-ation for macroscopic properties such as density and viscosity is less than 5%, indicating that it is suitable for the simulation of the microstructure and macroscopic properties of the NaF-AlF3-LiF/ KF based electrolyte.

References

[1]  王鹰. 铝电解质中的锂盐和钾盐的分析与研究[J]. 轻金属, 1993(3): 30-33.
[2]  李春潮, 黄健. 锂在氧化铝生产过程中的存在行为[J]. 轻金属, 2005(6): 17-19.
[3]  程保生. 铝电解质体系中锂盐含量对技术参数的影响[J]. 甘肃冶金, 2012, 34(5): 24-26.
[4]  陈富强. 锂盐、钾盐对预焙槽生产的影响[J]. 材料与冶金学报, 2010, 9(z1): 148-149, 151.
[5]  Solheim, A., Stoen, L. and Kvello, J. (2012) Cryoscopic Data for Hall-Héroult Bath Containing Magnesium Fluoride, Calcium Fluoride, Potassium Cryolite, and Sodium Chloride. In: Suarez, C.E., Ed., Light Metals 2012, Springer, Cham, 763-768.
https://doi.org/10.1007/978-3-319-48179-1_131
[6]  曹大力, 邱竹贤, 王吉坤, 等. 锂盐在铝电解中的作用[J]. 材料导报, 2006, 20(8): 90-93.
[7]  Kan, H.M., Wang, Z.W., Shi, Z.N., Ban, Y.G. and Qiu, Z.X. (2007) Liquidus Temperature, Density and Electrical Conductivity of Electrolyte for Aluminum Electrolysis. The Chinese Journal of Process Engineering, 7, 604-609.
https://doi.org/10.1149/1.2806945
[8]  阚洪敏, 王兆文, 班允刚, 等. NaCl和LiF的添加对铝电解质初晶温度影响的研究[J]. 冶金分析, 2007, 27(3): 13-17.
[9]  阚洪敏, 班允刚, 石忠宁, 等. LiF对铝电解质物理化学性质的影响[C]//2006年全国博士生学术论坛——冶金工程分论坛论文集. 2006: 85-88.
[10]  陈建设, 李德祥. 铝电解质Na3AlF6-AlF3-LiF-MgF2-CaF2系初晶温度上20℃的熔盐性质和等溶成分[J]. 轻金属, 2009(1): 22-26.
[11]  张跃宏, 翟秀静, 李斌川. 钾盐和锂盐对电解质初晶温度、密度、电导率的影响[C]//全国有色金属工业低碳经济及冶炼废气减排学术研讨会论文集. 长沙: 中南大学出版社, 2010: 31-33.
[12]  马秀芳, 李德祥, 陈建设, 等. Na3AlF6-AlF3-LiF-CaF2系熔体的等溶初晶温度和等溶变温密度[J]. 中国有色金属学报, 2000, 10(1): 109-112.
[13]  Robert, E., Olsen, J.E., Danek, V., et al. (2014) Structure and Thermodynamics of Alkali Fluo-ride-Aluminum Fluoride-Alumina Melts. Vapor Pressure, Solubility, and Raman Spectroscopic Studies. Journal of Physical Chemistry B, 101, 9447-9457.
https://doi.org/10.1021/jp9634520
[14]  Skybakmoen, E., Solheim, A. and Sterten, S. (1997) Alumina Solubility in Molten Salt Systems of Interest for Aluminum Electrolysis and Related Phase Diagram Data. Metallurgical & Materials Transactions B, 28, 81-86.
https://doi.org/10.1007/s11663-997-0129-9
[15]  Heyrman, M. and Chartrand, P. (2007) A Thermodynamic Model for the NaF-KF-AIF3-NaCl-KCl-AlCl3 System. In: Sorlie, M., Ed., Light Metals 2007, Minerals, Metals & Materials Society, Orlando, 519-524.
[16]  Apisarov, A., Dedyukhin, A., Redkin, A., et al. (2009) Physi-cal-Chemical Properties of the Kf-Naf-Alf3 Molten System with Low Cryolite Ratio. In: Bearne, G., Ed., Light Metals 2009, Minerals, Metals and Materials Society, San Francisco, 401-403.
[17]  Apisarov, A., Dedyukhin, A., Niko-laeva, E., et al. (2011) Liquidus Temperatures of Cryolite Melts with Low Cryolite Ratio. Metallurgical & Materials Transactions B, 42, 236-242.
https://doi.org/10.1007/s11663-010-9462-5
[18]  Lai, Y., Xin, P., Tian, Z., et al. (2012) Liquidus Temperatures of the System Na3AlF6-K3AlF6-AlF3. In: Suarez, C.E., Ed., Light Metals 2012, Springer, Cham, 691-694.
https://doi.org/10.1007/978-3-319-48179-1_119
[19]  王家伟. Na3AlF6-K3AlF6-AlF3体系的初晶温度、Al2O3溶解能力及NiFe2O4基惰性阳极低温电解腐蚀研究[D]: [博士学位论文]. 长沙: 中南大学, 2008.
[20]  徐驰, 陈念贻, 江乃雄. 冰晶石-氧化铝熔体结构的计算机模拟研究[J]. 物理化学学报, 1987, 3(1): 55-59.
[21]  Belashchenko, D.K., Ostrovski, O.I. and Saposznikova, S.Y. (1998) Computer Study of Structure, Thermodynamic, and Electrical Transport Properties of Na3AlF6-Al2O3 and CaF2-Al2O3 Melts. Metallurgical & Materials Transactions B, 29, 105-110.
https://doi.org/10.1007/s11663-998-0012-3
[22]  Lv, X.J., Xu, Z.M., et al. (2016) First-Principles Molecular Dynamics Investigation on Na3AlF6 Molten Salt. Journal of Fluorine Chemistry, 185, 42-47.
https://doi.org/10.1016/j.jfluchem.2016.03.004
[23]  Lv, X.J., Han, Z.X., Chen, J.G., et al. (2018) First-Principles Molecular Dynamics Study of Ionic Structure and Transport Properties of LiF-NaF-AlF3 Molten Salt. Chemical Physics Letters, 706, 237-242.
https://doi.org/10.1016/j.cplett.2018.06.005
[24]  陈应斌, 陈金辉, 胡博, 陈昌, 官朝红. KF-NaF-AlF3体系结构性质的分子动力学模拟[J]. 冶金工程, 2021, 8(2): 67-75.
[25]  李劼, 王景坤, 国辉, 张红亮. 基于密度泛函理论的KF-NaF-AlF3低温电解质体系势参数拟合及分子动力学模拟[J]. 中南大学学报(自然科学版), 2020, 51(12): 3300-3308.
[26]  Ding, J., Du, L., Pan, G., et al. (2018) Molecular Dynamics Simulations of the Local Structures and Thermodynamic Properties on Molten Alkali Carbonate K2CO3. Applied Energy, 220, 536-544.
https://doi.org/10.1016/j.apenergy.2018.03.116
[27]  Salanne, M., Simon, C., Turq, P. and Madden, P.A. (2009) Heat-Transport Properties of Molten Fluorides: Determination from First-Principles. Journal of Fluorine Chemistry, 130, 38-44.
https://doi.org/10.1016/j.jfluchem.2008.07.013
[28]  Silny, A., Chrenková, M., Daněk, V., et al. (2004) Density, Viscosity, Surface Tension, and Interfacial Tension in the Systems NaF(KF) + AlF3. Journal of Chemical & Engineering Data, 49, 1542-1545.
https://doi.org/10.1021/je0341965

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413