全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高速列车受电弓气动噪声仿真及控制技术研究
Research on Simulation and Control Technology of Aerodynamic Noise of High Speed Train Pantograph

DOI: 10.12677/OJAV.2023.114011, PP. 97-110

Keywords: 噪声控制,受电弓,气动噪声,偶极子声源
Noise Control
, Pantograph, Aerodynamic Noise, Dipole Source

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着高速列车运营速度不断提高,气动噪声逐渐成为列车主要噪声来源。受电弓作为车顶主要的受流装置,其气动噪声成为亟待解决的噪声问题。本文基于Lighthill声类比理论,采用CFD与声学求解器耦合的研究方法,通过数值计算获取了受电弓区流场状况,分析了表面气动噪声源分布及频谱特性,研究了采用受电弓杆件背风区射流的措施对流场影响,并评估了降噪效果。得出主要结论:1) 受电弓表面偶极子声源为受电弓区域的主要气动噪声来源,且背风面噪声远大于迎风面。2) 受电弓杆件背风区射流措施可有效改善流场状况,降低受电弓气动噪声。
With the continuous improvement of high-speed train operation speed, aerodynamic noise has gradually become the main source of train noise. As the main current collection device on the roof, the aerodynamic noise of the pantograph has become an urgent noise problem to be solved. This article is based on the Lighthill acoustic analogy theory and adopts the research method of coupling CFD and acoustic solver. The flow field in the pantograph area is obtained through numerical calcu-lation. Then the distribution and spectral characteristics of surface aerodynamic noise sources are analyzed. The effect of using the jet in the leeward area of the pantograph rod on the flow field is studied, and the noise reduction effect is evaluated. The main conclusions are drawn: 1) the surface dipole sound source of the pantograph is the main aerodynamic noise source in the pantograph ar-ea, and the noise on the leeward side is much greater than that on the windward side. 2) The measures of jet flow in the leeward area of the pantograph rod can effectively improve the flow field and reduce the aerodynamic noise of the pantograph.

References

[1]  孙振旭, 姚永芳, 杨焱, 等. 国内高速列车气动噪声研究进展概述[J]. 空气动力学学报, 2018, 36(3): 385-397.
[2]  成瀨功, 牛晓妮. 700系电动车组用单臂型受电弓[J]. 国外铁道车辆, 2003, 40(3): 35-37.
[3]  Suzuki, M., Ikeda, M. and Koyama, T. (2008) Flow Control for Pantographs Using Air Intake and Outlet. Journal of Mechanical Systems for Transportation and Logistics, 1, 272-280.
https://doi.org/10.1299/jmtl.1.272
[4]  Takaishi, T. and Ikeda, M. (2005) Numerical Method for Evaluation Aeroacoustic Sound Sources. Quarterly Report of RTRI, 46, 23-28.
https://doi.org/10.2219/rtriqr.46.23
[5]  Ikeda, M. and Takaishi, T. (2004) Perforated Pantograph Horn Aeolia Tone Suppression Mechanism. Quarterly Report of RTRI, 45,169-174.
https://doi.org/10.2219/rtriqr.45.169
[6]  Noger, C., Patrat, J., Peube, J. and Peube, J.L. (2000) Aeroacoustical Study of the TGV Pantograph Recess. Journal of Sound and Vibration, 231, 563-575.
https://doi.org/10.1006/jsvi.1999.2545
[7]  王渤洪, W. Herbert. ICE用DSA350S型高速受电弓的开发和运行经验[J]. 电力牵引快报, 1994(8): 13-18.
[8]  Noh, H.-M. (2019) Wind Tunnel Test Analysis to Determine Pantograph Noise Contribution on a High-Speed Train. Advances in Mechanical Engineering, 11, No. 10.
https://doi.org/10.1177/1687814019884778
[9]  陆晓柳. CRH380A型高速列车气动噪声数值模拟研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2017.
[10]  Zhang, Y.D., Zhang, J.Y., Li, T., et al. (2017) Investigation of the Aeroacoustic Behavior and Aerodynamic Noise of a High-Speed Train Pantograph. Science China Technological Sci-ences, 60, 561-575.
https://doi.org/10.1007/s11431-016-0649-6
[11]  Tan, X.-M., Yang, Z.-G., et al. (2018) Vortex Structures and Aeroacoustic Performance of the Flow Field of the Pantograph. Journal of Sound and Vibration, 432, 17-32.
https://doi.org/10.1016/j.jsv.2018.06.025
[12]  Li, R., Liang, W., et al. (2020) Investigation of Turbulence-Induced Quadrupole Source Acoustic Characteristics of a Three-Dimensional Hydrofoil. Modern Physics Letters B, 34, 18.
https://doi.org/10.1142/S0217984920501456

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413