全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Temperature on Frost-Free Days and Length of Crop Growing Season across Southern Ontario

DOI: 10.4236/ajcc.2023.124030, PP. 700-718

Keywords: Climate Change, Minimum Temperature, Frost-Free Days, Snowfall, Crop Growing Season, Southern Ontario

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of climate change on Frost-free days in winter is distinctive. The average annual temperature is going upward but the extreme increase is in the winter temperature. Winter average temperature is going up by about 2˚C. However, extreme daily minimum temperature is going up by more than 3˚C. This climate effect has a great impact on the nature of precipitation and length of frost-free days. The snowfall over winter months is decreasing and the rainfall is increasing. However, the number of frost-free days during late fall months, early winter months, late winter months and early spring months are increasing. This result reveals an increase in length of the growing season. This research focuses on the effect of change in climatic variables on Frost-free days in Southern Ontario. Therefore, special attention should be given to the effect of change in climate Frost-free conditions on length of crop growing in winter season for potential investigation.

References

[1]  AAFC (Agriculture and Agri-Food Canada) (2022). Effective Growing Degree Days. Ottawa (ON): Government of Canada.
https://publications.gc.ca/site/eng/9.859495/publication.html
[2]  Agriculture Canada (1977). Growing Degree-Days and Crop Production in Canada.
https://publications.gc.ca/collections/collection_2013/aac-aafc/agrhist/A53-1635-1977-eng.pdf
[3]  Ahmed, S. I., Rudra, R., Dickinson, T., & Ahmed, M. (2014). Trend and Periodicity of Temperature Time Series in Ontario. American Journal of Climate Change, 3, 272-288.
https://doi.org/10.4236/ajcc.2014.33026
[4]  Alonso, C., Román, A., Bejarano, M. D., de Jalon, D. G., & Carolli, M. (2017). A Graphical Approach to Characterize Sub-Daily Flow Regimes and Evaluate Its Alterations Due to Hydropeaking. Science of the Total Environment, 574, 532-543.
https://doi.org/10.1016/j.scitotenv.2016.09.087
[5]  An, H., & Carew, R. (2015). Effect of Climate Change and Use of Improved Varieties on Barley and Canola Yield in Manitoba. Canadian Journal of Plant Science, 95, 127-139.
https://doi.org/10.4141/cjps-2014-221
[6]  Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions. Nature, 438, 303-309.
https://doi.org/10.1038/nature04141
[7]  Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat.
https://doi.org/10.1017/CBO9780511546013
[8]  Bennett, M. K. (1959). The Isoline of Ninety Frost-Free Days in Canada. Economic Geography, 35, 41-50.
https://doi.org/10.2307/142077
[9]  Bonsal, B. R., Zhang, X., Vincent, L. A., & Hogg, W. D. (2001). Characteristics of Daily and Extreme Temperatures over Canada. Journal of Climate, 14, 1959-1976.
https://doi.org/10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
[10]  Brazdil, R., Budikova, M., Auer, I., Böhm, R., Cegnar, T., Faško, P., & Niedźwiedź, T. (1996). Trends of Maximum and Minimum Daily Temperatures in Central and Southeastern Europe. International Journal of Climatology, 16, 765-782.
https://doi.org/10.1002/(SICI)1097-0088(199607)16:7<765::AID-JOC46>3.0.CO;2-O
[11]  Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., & Tol, R. S. (2013). Climate Change Impacts on Global Agriculture. Climatic Change, 120, 357-374.
https://doi.org/10.1007/s10584-013-0822-4
[12]  Cooter, E. J., & Leduc, S. K. (1995). Recent Frost Date Trends in the North-Eastern USA. International Journal of Climatology, 15, 65-75.
https://doi.org/10.1002/joc.3370150108
[13]  Easterling, W., & Apps, M. (2005). Assessing the Consequences of Climate Change for Food and Forest Resources: A View from the IPCC. In J. Salinger, M. Sivakumar, & R. P. Motha (Eds.), Increasing Climate Variability and Change (pp. 165-189). Springer.
https://doi.org/10.1007/1-4020-4166-7_8
[14]  ECCC: Environment and Climate Change Canada (2015). List of 2015 Peer-Reviewed. Scientific and Technical Publications.
[15]  EPA: Environmental Protection Agency (2016). Climate Change Indicators in the United States EPA 430-R-10-007 April.
[16]  Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Wolfe, D. et al. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103, 351-370.
https://doi.org/10.2134/agronj2010.0303
[17]  IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[18]  IPCC (2013). The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[19]  IPCC (2014). Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[20]  Jarvis, C. H., & Stuart, N. (2001). A Comparison among Strategies for Interpolating Maximum and Minimum Daily Air Temperatures. Part II: The Interaction between Number of Guiding Variables and the Type of Interpolation Method. Journal of Applied Meteorology, 40, 1075-1084.
https://doi.org/10.1175/1520-0450(2001)040<1075:ACASFI>2.0.CO;2
[21]  Jiang, R., Gan, T. Y., Xie, J., Wang, N., & Kuo, C. C. (2017). Historical and Potential Changes of Precipitation and Temperature of Alberta Subjected to Climate Change Impact: 1900-2100. Theoretical and Applied Climatology, 127, 725-739.
https://doi.org/10.1007/s00704-015-1664-y
[22]  Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., & Peterson, T. C. (1993). Asymmetric Trends of Daily Maximum and Minimum Temperature. Bulletin of the American Meteorological Society, 74, 1007-1024.
https://doi.org/10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2
[23]  Klein Tank, A. M. G., & Können, G. P. (2003). Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946-99. Journal of Climate, 16, 3665-3680.
https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2
[24]  Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., & Shiklomanov, I. (2007). Fresh Water Resources and Their Management.
https://centaur.reading.ac.uk/1017/
[25]  Larsen, R. J., Beres, B. L., Blackshaw, R. E., & Graf, R. J. (2018). Extending the Growing Season: Winter Cereals in Western Canada. Canadian Journal of Plant Science, 98, 267-277.
https://doi.org/10.1139/CJPS-2017-0278
[26]  Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., & Schlenker, W. (2013). The Critical Role of Extreme Heat for Maize Production in the United States. Nature Climate Change, 3, 497-501.
https://doi.org/10.1038/nclimate1832
[27]  Major, D. J., McGinn, S. M., & Beauchemin, K. A. (2021). Climate Change Impacts on Corn Heat Unit for the Canadian Prairie Provinces. Agronomy Journal, 113, 1852-1864.
https://doi.org/10.1002/agj2.20574
[28]  Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., & Inape, K. (2001). Trends in Extreme Daily Rainfall and Temperature in Southeast Asia and the South Pacific: 1961-1998. International Journal of Climatology, 21, 269-284.
https://doi.org/10.1002/joc.610
[29]  Mapfumo, E., Chanasyk, D. S., Puurveen, D., Elton, S., & Acharya, S. (2023). Historic Climate Change Trends and Impacts on Crop Yields in Key Agricultural Areas of the Prairie Provinces in Canada: A Literature Review. Canadian Journal of Plant Science, 103, 243-258.
https://doi.org/10.1139/cjps-2022-0215
[30]  Natural Resources Canada (2020). Growing Season. Government of Canada.
https://www.nrcan.gc.ca/climate-change/impacts-adaptations/climate-change-impacts-forests/forest-change-indicators/growing-season/18470#how
[31]  Natural Resources Canada (2021). Drought. Government of Canada.
https://ressources-naturelles.canada.ca/changements-climatiques/impacts-adaptation/changements-climatiques/indicateurs-des-changements-forestiers/secheresse/17773
[32]  Neelin, J. D., Sahany, S., Stechmann, S. N., & Bernstein, D. N. (2017). Global Warming Precipitation Accumulation Increases above the Current-Climate Cutoff Scale. Proceedings of the National Academy of Sciences of the United States of America, 114, 1258-1263.
https://doi.org/10.1073/pnas.1615333114
[33]  Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Lee, D. et al. (2009). Climate Change: Impact on Agriculture and Costs of Adaptation. International Food Policy Research Institute.
[34]  Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Fang, J., et al. (2010). The Impacts of Climate Change on Water Resources and Agriculture in China. Nature, 467, 43-51.
https://doi.org/10.1038/nature09364
[35]  Qian, B., Gameda, S., Zhang, X., & De Jong, R. (2012). Changing Growing Season Observed in Canada. Climatic Change, 112, 339-353.
https://doi.org/10.1007/s10584-011-0220-8
[36]  Qian, B., Zhang, X., Chen, K., Feng, Y., & O’Brien, T. (2010). Observed Long-Term Trends for Agroclimatic Conditions in Canada. Journal of Applied Meteorology and Climatology, 49, 604-618.
https://doi.org/10.1175/2009JAMC2275.1
[37]  Rogers, J. C., Wang, S. H., & Coleman, J. S. (2007). Evaluation of a Long-Term (1882-2005) Equivalent Temperature Time Series. Journal of Climate, 20, 4476-4485.
https://doi.org/10.1175/JCLI4265.1
[38]  Rosenzweig, C., Iglesius, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Global Change and Human Health, 2, 90-104.
https://doi.org/10.1023/A:1015086831467
[39]  Rudra, R. P., Dickinson, T., Dhiman, J., Manzoor, S., Goel, P., & Shukla, R. (2022). Exceedance Probability Model for Predicting the Frequency of Frost-Free Days. Journal of the ASABE, 65, 1249-1256.
https://doi.org/10.13031/ja.14853
[40]  Rudra, R. P., Dickinson, W. T., Ahmed, S. I., Patel, P., Zhou, J., Gharabaghi, B., & Khan, A. A. (2015). Changes in Rainfall Extremes in Ontario. International Journal of Environmental Research, 9, 1117-1126.
[41]  Schaap, B. F., Blom-Zandstra, M., Hermans, C. M., Meerburg, B. G., & Verhagen, J. (2011). Impact Changes of Climatic Extremes on Arable Farming in the North of the Netherlands. Regional Environmental Change, 11, 731-741.
https://doi.org/10.1007/s10113-011-0205-1
[42]  Shukla, R., & Khare, D. (2013). Historical Trend Investigation of Temperature Variation in Indira Sagar Canal Command Area in Madhya Pradesh (1901-2005). International Journals of Advanced Information Science and Technology, 15, 58-67.
[43]  Shukla, R., Khare, D., & Deo, R. (2015). Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India. In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (pp. 313-317). IEEE.
https://doi.org/10.1109/ICMLA.2015.75
[44]  Shukla, R., Khare, D., Kumar Dwivedi, A., Rudra, R. P., Palmate, S. S., Ojha, C. S. P., & Singh, V. P. (2023). Evaluation of Statistical Downscaling Model’s Performance in Projecting Future Climate Change Scenarios. Journal of Water and Climate Change, 14, 3559-3595.
https://doi.org/10.2166/wcc.2023.207
[45]  Shukla, R., Khare, D., Tiwari, P., Mishra, P. K., & Gupta, S. (2017). Analysis of Long Term Temperature Trend for Madhya Pradesh, India (1901-2005). Current World Environment, 12, 68-79.
https://doi.org/10.12944/CWE.12.1.09
[46]  Slater, L., & Villarini, G. (2017). On the Impact of Gaps on Trend Detection in Extreme Streamflow Time Series. International Journal of Climatology, 37, 3976-3983.
https://doi.org/10.1002/joc.4954
[47]  Tubiello, F. N., Soussana, J. F., & Howden, S. M. (2007). Crop and Pasture Response to Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19686-19690.
https://doi.org/10.1073/pnas.0701728104
[48]  Vincent, L. A., Zhang, X., Brown, R. D., Feng, Y., Mekis, E., Milewska, E. J., Wang, X. L., et al. (2015). Observed Trends in Canada’s Climate and Influence of Low-Frequency Variability Modes. Journal of Climate, 28, 4545-4560.
https://doi.org/10.1175/JCLI-D-14-00697.1
[49]  Vincent, L. A., Zhang, X., Mekis, é., Wan, H., & Bush, E. J. (2018). Changes in Canada’s Climate: Trends in Indices Based on Daily Temperature and Precipitation Data. Atmosphere-Ocean, 56, 332-349.
https://doi.org/10.1080/07055900.2018.1514579
[50]  Yagouti, A., Boulet, G., Vincent, L., Vescovi, L., & Mekis, E. (2008). Observed Changes in Daily Temperature and Precipitation Indices for Southern Québec, 1960-2005. Atmosphere-Ocean, 46, 243-256.
https://doi.org/10.3137/ao.460204
[51]  Zhang, X., Vincent, L. A., Hogg, W. D., & Niitsoo, A. (2000). Temperature and Precipitation Trends in Canada during the 20th Century. Atmosphere-Ocean, 38, 395-429.
https://doi.org/10.1080/07055900.2000.9649654

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413