全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stability of Nuclei Based on the New Proton and Neutron Model

DOI: 10.4236/ns.2023.1512022, PP. 289-299

Keywords: New Nuclear Picture of Nuclei, Stability of Nuclei, Binding Energy, Magic Numbers

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to the new proton and neutron nuclear picture described earlier, the structure of the nucleus will also be given a new interpretation. The role of the delocalized electrons detached from the outer shell of neutrons is shown in the binding energy value of the nucleus. It is pointed out that the spatial arrangement of nucleons is also very important for the stability of nuclei according to the analyzation of the magic numbers from a geometric point of view.

References

[1]  Von Weizsacker, C.F. (1935) Zur Theorie de Kernmassen. Zeitschrift für Physik, 96, 431-458.
https://doi.org/10.1007/BF01337700
[2]  Bohr, N. and Wheeler, J.A. (1939) The Mechanism of Nuclear Fission. Physical Review, 56, 426-450.
https://doi.org/10.1103/PhysRev.56.426
[3]  Bethe, H.A. (1936) Nuclear Physics A. Stationary States of Nuclei. Reviews of Modern Physics, 8, 82-229.
https://doi.org/10.1103/RevModPhys.8.82
[4]  Krasznahorkay, A., Bacelar, J., Bordewijk, J.A., Brandenburg, S., Buda, A., van’t Hof, G., et al. (1991) Excitation of the Isovector Giant Dipole Resonance by Inelastic α Scattering and the Neutron Skin of Nuclei. Physical Review Letters, 66, 1287-1290.
https://doi.org/10.1103/PhysRevLett.66.1287
[5]  Krasznahorkay, A., Balanda, A., Bordewijk, J.A., Brandenburg, S., Harakeh, M.N., Kalantar-Nayestanaki, N., Nyakó, B.M., Timár, J. and van der Woude, A. (1994) Excitation of the Isovector GDR by Inelastic α-Scattering as a Measure of the Neutron Skin of Nuclei. Nuclear Physics A, 567, 521-540.
https://doi.org/10.1016/0375-9474(94)90022-1
[6]  Krasznahorkay, A., Hunyadi, M., Harakeh, M.N., Csatlós, M., Faestermann, T., Gollwitzer, A., et al. (1998) Experimental Evidence for Hyperdeformed States in U Isotopes. Physical Review Letters, 80, 2073-2076.
https://doi.org/10.1103/PhysRevLett.80.2073
[7]  Krasznahorkay, A., et al. (1999) On the Excitation Energy of the Ground State in the Third Minimum of 234U. Physics Letters B, 461, 15-21.
https://doi.org/10.1016/S0370-2693(99)00826-6
[8]  Thirolf, P.G. and Habs, D. (2002) Spectroscopy in the Second and Third Minimum of Actinide Nuclei. Progress in Particle and Nuclear Physics, 49, 325-402.
https://doi.org/10.1016/S0146-6410(02)00158-8
[9]  Krasznahorkay, A., Paar, N., Vretenar, D. and Harakeh, M.N. (2013) Anti-Analog Giant Dipole Resonances and the Neutron Skin of Nuclei. Physics Letters B, 720, 428-432.
https://doi.org/10.1016/j.physletb.2013.02.043
[10]  Suzuki, T. (2022) The Relationship of the Neutron Skin Thickness to the Symmetry Energy and Its Slope. Progress of Theoretical and Experimental Physics, 2022, 063D01.
https://doi.org/10.1093/ptep/ptac083
[11]  Mayer, M.G. (1949) On Closed Shells in Nuclei. II. Physical Review, 75, 1969-1970.
https://doi.org/10.1103/PhysRev.75.1969
[12]  Haxel, O., Jensen, J.D.H. and Suess, H.E. (1950) Model-Based Interpretation of Excellent Nucleon Numbers in Nuclear Construction. Zeitschrift für Physik, 128, 295-311.
https://doi.org/10.1007/BF01333077
[13]  de Shalit, A. and Talmi, I. (1963) Nuclear Shell Theory. Academic Press Inc., New York.
https://doi.org/10.1063/1.3051142
[14]  Rowe, D.J., Thiamova, G. and Wood, J.L. (2006) Implications of Deformation and Shape Coexistence for the Nuclear Shell Model. Physical Review Letters, 97, Article ID: 202501.
https://doi.org/10.1103/PhysRevLett.97.202501
[15]  Elliott, J.P. (1958) Collective Motion in the Nuclear Shell Model II. The Introduction of Intrinsic Wave-Functions. Proceedings of the Royal Society of London. Series A, 245, 562-581.
https://doi.org/10.1098/rspa.1958.0101
[16]  Wildermuth, K. and Kanellopoulos, Th. (1958) The “Cluster Model” of the Atomic Nuclei. Nuclear Physics, 7, 150-162.
https://doi.org/10.1016/0029-5582(58)90245-1
[17]  Harvey, M. (1973) Generalised Quartet Model for Particle-Hole Excitations across Major Shells. Nuclear Physics A, 202, 191-208.
https://doi.org/10.1016/0375-9474(73)90251-0
[18]  Itagaki, N., Cseh, J. and Ploszajczak, M. (2011) Simplified Modeling of Cluster-Shell Competition in 20Ne and 24Mg. Physical Review C. 83, 14302.
[19]  Avila, M.L., Rogachev, G.V., Goldberg, V.Z., Johnson, E.D., Kemper, K.W., Tchuvil’sky, Y.M. and Volya, A.S. (2014) α-Cluster Structure of 18O. Physical Review C, 90, Article ID: 024327.
https://doi.org/10.1103/PhysRevC.90.024327
[20]  Cseh, J. and Riczu, G. (2016) Quartet Excitations and Cluster Spectra in Light Nuclei. Physics Letters B, 757, 312-316.
https://doi.org/10.1016/j.physletb.2016.03.080
[21]  Bijker, R. and Iachello, F. (2017) The Algebraic Cluster Model: Structure of 16O. Nuclear Physics A, 957, 154-176.
https://doi.org/10.1016/j.nuclphysa.2016.08.008
[22]  Cseh, J., Riczu, G., Darai, J., Dytrych, T. and Betak, E. (2017) Shapes, Quartets and Clusters of Atomic Nuclei in a Semimicroscopic Framework. Bulgarian Journal of Physics, 44, 466-477.
[23]  Schweppe, J., Gruppe, A., Bethge, K., Bokemeyer, H., Cowan, T., Folger, H., et al. (1983) Observation of a Peak Structure in Positron Spectra from U+Cm Collisions. Physical Review Letters, 51, 2261-2264.
https://doi.org/10.1103/PhysRevLett.51.2261
[24]  Cowan, T., Backe, H., Begemann, M., Bethge, K., Bokemeyer, H., Folger, H., et al. (1985) Anomalous Positron Peaks from Supercritical Collision Systems. Physical Review Letters, 54, 1761-1764.
https://doi.org/10.1103/PhysRevLett.54.1761
[25]  Cowan, T., Backe, H., Bethge, K., Bokemeyer, H., Folger, H., Greenberg, J.S., et al. (1986) Observation of Correlated Narrow-Peak Structures in Positron and Electron Spectra from Superheavy Collision Systems. Physical Review Letters, 56, 444-447.
https://doi.org/10.1103/PhysRevLett.56.444
[26]  Krasznahorkay, A.J., Csatlós, M., Csige, L., Gácsi, Z., Gulyás, J., Hunyadi, M., et al. (2016) Observation of Anomalous Internal Pair Creation in 8Be: A Possible Indication of a Light, Neutral Boson. Physical Review Letters, 116, Article ID: 042501.
https://doi.org/10.1103/PhysRevLett.116.042501
[27]  Kálmán, P. and Keszthelyi, T. (2019) Forbidden Nuclear Reactions. Physical Review, C, 99, Article ID: 054620.
https://doi.org/10.1103/PhysRevC.99.054620
[28]  Kálmán, P. and Keszthelyi, T. (2020) Anomalous Internal Pair Creation. The European Physical Journal A, 56, Article No. 205.
https://doi.org/10.1140/epja/s10050-020-00202-z
[29]  Cziráki, á. (2023) Structure of Quarks and a New Model of Proton and Neutron: Answer to Some Opened Questions. Natural Science, 15, 11-18.
https://doi.org/10.4236/ns.2023.151002
[30]  De Rújula, A. (2010) QED IS NOT ENDAngered by the Proton’s Size. Physics Letters B, 693, 555-558.
https://doi.org/10.1016/j.physletb.2010.08.074
[31]  Baldwin, G. and Klaiber, G. (1947) Photo-Fission in Heavy Elements. Physical Review, 71, 3-10.
https://doi.org/10.1103/PhysRev.71.3
[32]  Stanley, S.H. (1976) Giant Resonances. Australian Journal of Physics, 29, 511-559.
https://doi.org/10.1017/S0272503700017389
[33]  Speth, J. and van der Woude, A. (1981) Giant-Resonances in Nuclei. Reports on Progress in Physics, 44, 719-786.
https://doi.org/10.1088/0034-4885/44/7/002
[34]  Bertrand, F.E. (1981) Giant Multipole Resonances—Perspectives after Ten Years. Nuclear Physics A, 354, 129-156.
https://doi.org/10.1016/0375-9474(81)90596-0
[35]  Garg, U. and Coló, G. (2018) The Compression-Mode Giant Resonances and Nuclear Incompressibility. Progress in Particle and Nuclear Physics, 101, 55-95.
https://doi.org/10.1016/j.ppnp.2018.03.001
[36]  Savran, D., Aumann, T. and Zilges, A. (2013) Experimental Studies of the Pygmy Dipole Resonance. Progress in Particle and Nuclear Physics, 70, 210-245.
https://doi.org/10.1016/j.ppnp.2013.02.003
[37]  Ozawa, A., Kobayashi, T., Suzuki, T., Yoshida, K. and Tanihata, I. (2000) New Magic Number, N = 16, near the Neutron Drip Line. Physical Review Letters, 84, 5493.
https://doi.org/10.1103/PhysRevLett.84.5493
[38]  Ghahramany, N., Ghanaatian, M. and Hooshmand, M. (2007) Quark-Gluon Plasma Model and the Origin of Magic Numbers. Iranian Physical Journal, 1, 35-38.
https://doi.org/10.1063/1.2927606
[39]  Ghahramany, N., Hora, H., Miley, G.H., Ghanaatian, M., Hooshmand, M., Philberth, K. and Osman, F. (2008) Nuclear Magic Numbers Based on a Quarklike Model Is Compared with the Boltzmann Distribution Model from Nuclear Abundance in the Universe and Low Energy Nuclear Reactions. Physics Essays, 21, 200-206.
https://doi.org/10.4006/1.3027450

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413