全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Titanium Dioxide Nanoparticles on Growth and Biomass Accumulation in Lettuce (Lactuca sativa)

DOI: 10.4236/ajps.2024.151001, PP. 1-13

Keywords: Growth Characteristics, Lettuce, Nanoparticles, Titanium Dioxide, Toxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of titanium dioxide nanoparticles (nTiO2) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO2 (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO2 to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO2 did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO2 reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO2. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO2 application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO2. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO2. Thus, foliar application of nTiO2 may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity.

References

[1]  Lyu, S., Wei, X., Chen, J., Wang, C., Wang, X. and Pan, D. (2017) Titanium as a Beneficial Element for Crop Production. Frontiers in Plant Science, 8, Article No. 597.
https://doi.org/10.3389/fpls.2017.00597
[2]  Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C. and Yang, P. (2006) Influences of Nano-Anatase TiO2 on the Nitrogen Metabolism of Growing Spinach. Biological Trace Element Research, 110, 179-190.
https://doi.org/10.1385/BTER:110:2:179
[3]  Daghan, H., Gulmezoglu, N., Koleli, N. and Karakaya, B. (2020) Impact of Titanium Dioxide Nanoparticles (TiO2-NPs) on Growth and Mineral Nutrient Uptake of Wheat (Triticum vulgare L.). Biotech Studies, 29, 69-76.
https://doi.org/10.38042/biost.2020.29.02.03
[4]  Choi, H.G. (2021) Influence of TiO2 Foliar Spray Application on Photosynthesis and Chlorophyll Fluorescence of Strawberry during Low Light Intensity. Acta Horticulturae, 1309, 247-252.
https://doi.org/10.17660/ActaHortic.2021.1309.36
[5]  Vatankhah, A., Aliniaeifard, S., Moosavi-Nezhad, M., Abdi, S., Mokhtarpour, Z., Reezi, S., Tsaniklidis, G. and Fanourakis, D. (2023) Plants Exposed to Titanium Dioxide Nanoparticles Acquired Contrasting Photosynthetic and Morphological Strategies Depending on the Growing Light Intensity: A Case Study in Radish. Scientific Reports, 13, Article No. 5873.
https://doi.org/10.1038/s41598-023-32466-y
[6]  Mohajerani, M., Burnett, L., Smith, J.V., Kurmus, H., Milas, J., Arulrajah, A., Horpibulsuk, S. and Kadir, A.A. (2019) Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials, 12, Article No. 3052.
https://doi.org/10.3390/ma12193052
[7]  Etacheri, V., Valentin, C., Schneider, J., Bahnemann, D. and Pillai, S.C. (2015) Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. Journal of Photochemistry and Photobiology C: Phytochemistry Reviews, 25, 1-29.
https://doi.org/10.1016/j.jphotochemrev.2015.08.003
[8]  Wang, T.C., Lu, N., Li, J. and Wu, Y. (2011) Plasma-TiO2 Catalytic Method for High-Efficiency Remediation of p-Nitrophenol Contaminated Soil in Pulsed Discharge. Environmental Science and Technology, 45, 9301-9307.
https://doi.org/10.1021/es2014314
[9]  Long, M., Wang, J., Zhuang, H., Zhang, Y. and Wu, H. (2014) Performance and Mechanism of Standard Nano-TiO2 (P-25) in Photocatalytic Disinfection of Foodborne Microorganisms—Salmonella typhimurium and Listeria monocytogenes. Food Control, 39, 68-74.
https://doi.org/10.1016/j.foodcont.2013.10.033
[10]  Kühn, K., Chaberny, I.F., Massholder, K., Stickler, M., Benz, V.W., Sonntag, H. and Erdinger, L. (2003) Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Dioxide and UVA Light. Chemosphere, 53, 71-77.
https://doi.org/10.1016/S0045-6535(03)00362-X
[11]  Zhan, C., Li, Y., Sharma, P.R., He, H., Sharma, S.K., Wang, R. and Hsiao, B.S. (2019) A Study of TiO2 Nanocrystal Growth and Environmental Remediation Capability of TiO2/CNC Nanocomposites. RSC Advances, 9, 40565-40576.
https://doi.org/10.1039/C9RA08861J
[12]  Jiang, F., Shen, Y., Ma, C., Zhang, X., Cao, W. and Rul, Y. (2017) Effects of TiO2 Nanoparticles on Wheat (Triticum aestivum L.) Seedlings Cultivated under Super-Elevated and Normal CO2 Conditions. PLOS ONE, 12, e0178088.
https://doi.org/10.1371/journal.pone.0178088
[13]  Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M.R., Fotopoulos, V. and Kimura, S. (2020) Titanium Dioxide Nanoparticles (TiO2 NPS) Promote Growth and Ameliorate Salinity Stress Effects on Essential Oil Profile and Biochemical Attributes of Dracocephalum moldavica. Scientific Reports, 10, Article No. 912.
https://doi.org/10.1038/s41598-020-57794-1
[14]  Song, U., Shin, M., Lee, G., Roh, J., Kim, Y. and Lee, E.J. (2013) Functional Analysis of TiO2 Nanoparticle Toxicity in Three Plant Species. Biological Trace Element Research, 155, 93-103.
https://doi.org/10.1007/s12011-013-9765-x
[15]  Andersen, C.P., King, G., Plocher, M., Storm, M., Pokhrel, L.R., Johnson, M.B. and Rygiewicz, P.T. (2016) Germination and Early Plant Development of Ten Plant Species Exposed to Titanium Dioxide and Cerium Oxide Nanoparticles. Environmental Technology and Chemistry, 35, 2223-2229.
https://doi.org/10.1002/etc.3374
[16]  Debnath, K., Das, A., Das, B. and Karfoma, J. (2020) TiO2 Nanoparticles Enhancing Germination, Growth and Yield of Rice. International Research Journal of Pure and Applied Chemistry, 21, 25-30.
https://doi.org/10.9734/irjpac/2020/v21i630173
[17]  Sebesta, M., Kolencik, M., Sunil, B.R., Illa, R., Mosnacek, J., Ingle, A. and Urik, M. (2021) Field Application of ZnO and TiO2 Nanoparticles on Agricultural Plants. Agronomy, 11, Article No. 2281.
https://doi.org/10.3390/agronomy11112281
[18]  Asli, S. and Neuman, P.M. (2009) Colloidal Suspensions of Clay or Titanium Dioxide Nanoparticles Can Inhibit Leaf Growth and Transpiration via Physical Effects on Root Water Transport. Plant, Cell and Environment, 32, 577-584.
https://doi.org/10.1111/j.1365-3040.2009.01952.x
[19]  Ruffini Castiglione, M., Giorgetti, L., Ger., C. and Cremonini, R. (2010) The Effects of Nano-TiO2 on Seed Germination, Development and Mitosis of Root Tip Cells of Vicia narbonensis and Zea mays L. Journal of Nanoparticle Research, 13, 2443-2449.
https://doi.org/10.1007/s11051-010-0135-8
[20]  Du, W., Sun, Y., Ji, R., Wu, J. and Gao, H. (2011) TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. Journal of Environmental Monitoring, 13, 822-828.
https://doi.org/10.1039/c0em00611d
[21]  Larue, C., Khodja, H., Herlin-Biome, N., Brisset, F., Flank, A., Fayard, B., Chillou, S. and Carriere, M. (2011) Investigation of Titanium Dioxide Nanoparticles Toxicity and Uptake by Plants. Journal of Physics, 304, Article ID: 012057.
https://doi.org/10.1088/1742-6596/304/1/012057
[22]  Korenkova, L., Sebesta, M., Urik, M., Kolencik, M., Kratosova, G., Bujdos, M., Vavra, I. and Dobrocka, E. (2017) Physiological Response of Culture Media-Grown barley (Hordeum vulgare L.) to Titanium Dioxide Nanoparticles. Acta Agriculture Scandinavica, Section B—Soli and Plant Science, 67, 285-291.
https://doi.org/10.1080/09064710.2016.1267255
[23]  Li, J., Naeem, M.S., Wang, X., Liu, L., Chen, C., Ma, N. and Zang, C. (2015) Nano-TiO2 Is Not Phytotoxic as Revealed by the Oilseed Rape Growth and Photosynthetic Apparatus Ultrastructural Response. PLOS ONE, 10, e0143885.
https://doi.org/10.1371/journal.pone.0143885
[24]  Larue, C., Layurette, J., Herlin-Biome, N., Khodja, H., Fayard, B., Flank, A., Brisset, F. and Carriere, M. (2012) Accumulation, Translocation and Impact of TiO2 Naoparticles in Wheat (Tritcum aestivum ssp.): Influence of Diameter and Crystal phase. Science of the Total Environment, 431, 197-208.
https://doi.org/10.1016/j.scitotenv.2012.04.073
[25]  Hu, J., Wu, X., Wu, F., Chen, W., Zhang, X., White, J.C., Li, J., Wan, Y., Liu, J. and Wang, X. (2020) TiO2 Nanoparticle Exposure on Lettuce (Lactuca sativa L.): Dose-Dependent Deterioration of Nutritional Quality. Environmental Science Nano, 7, 501.
https://doi.org/10.1039/C9EN01215J
[26]  Mattiello, A., Filippi, A., Poscic, F., Musetti, R., Savatici, M.C., Giordano, S., Vischi, M., Bertolini, A. and Marchiol, L. (2015) Evidence of Phytotoxicity and Genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 Nanoparticles. Frontiers in Plant Science, 6, Article No. 1043.
https://doi.org/10.3389/fpls.2015.01043
[27]  Dogaroglu, Z.G. and Koleli, N. (2017) TiO2 and ZnO Nanoparticles Toxicity in Barley (Hordeum vulgare L.). Clean-Soil Air Water, 45, Article ID: 1700096.
https://doi.org/10.1002/clen.201700096
[28]  Jurkow, R., Kalisz, A., Huska, D., Sekara, A. and Dastborhan, S. (2021) Sequential Changes in Antioxidant Potential of Oakleaf Lettuce Seedlings Caused by Nano-TiO2 Treatment. Nanomaterials, 11, Article No. 1171.
https://doi.org/10.3390/nano11051171
[29]  Zheng, L., Hong, F., Lu, S. and Liu, C. (2005) Effect of Nano-TiO2 on Strength of Naturally Aged Seeds and Growth of Spinach. Biological Trace Element Research, 104, 83-91.
https://doi.org/10.1385/BTER:104:1:083
[30]  Lin, D. and Xing, B. (2007) Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environmental Pollution, 150, 243-250.
https://doi.org/10.1016/j.envpol.2007.01.016
[31]  Chen, Y., Wu, N., Mao, H., Zhou, J., Su, Y., Zhang, Z., Zhang, H. and Yuan, S. (2019) Different Toxicities on Nanoscale Titanium Dioxide Particles in the Roots and Leaves of Wheat Seedlings. RSC Advances, 9, 19243-19252.
https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra02984b
https://doi.org/10.1039/C9RA02984B
[32]  Wani, S., Irum, S., Gul, I., Yaqoob, K., Khalid, U., Ali, M., Manzoor, U., Noor, T., Ali, S., Rizwan, M. and Arshad, M. (2021) TiO2 Nanoparticles Dose, Application Method and Phosphorous Levels Influence Genotoxicity in Rice (Oryza sativa L.), Soil Enzymatic Activities and Plant Growth. Ecotoxicology and Environmental Safety, 213, Article ID: 111977.
https://doi.org/10.1016/j.ecoenv.2021.111977
[33]  Lima, A., Carvalho, A., Pinheiro, S., Torres, Y., Miguel, T., Pireda, S., Fechine, P., Fergolente, L. and Miguel, E. (2023) Effect of TiO2 Microparticles in Lettuce (Lactuca sativa L.) Seeds and Seedlings. Bulletin of Environmental Contamination and Toxicology, 110, Article No. 116.
https://doi.org/10.1007/s00128-023-03752-2
[34]  Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J. and Lee, E. (2013) Functional Analyses of Nanoparticle Toxicity: A Comparative Study of the Effects of TiO2 and Ag on Tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 93, 60-67.
https://doi.org/10.1016/j.ecoenv.2013.03.033
[35]  Song, G., Gao, Y., Wu, H., Hou, W., Zhang, C. and Ma. (2012) Physiological Effect of Anatase TiO2 Nanoparticles on Lemna minor. Environmental Toxicology and Chemistry, 31, 2147-2152.
https://doi.org/10.1002/etc.1933
[36]  Shull, T.E., Kurepa, J. and Smalle, J.A. (2019) Anatase TiO2 Nanoparticles Induce Autophagy and Chloroplast Degradation in Thale Cress (Arabidopsis thaliana). Environmental Science and Technology, 53, 9522-9532.
https://doi.org/10.1021/acs.est.9b01648

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413