|
7-甲氧基香豆素和5,6,7,8-四甲氧基香豆素结构和紫外光谱的理论研究
|
Abstract:
采用密度泛函理论方法系统地研究了7-甲氧基香豆素和5,6,7,8-四甲氧基香豆素。相对于7-甲氧基香豆素,5,6,7,8-四甲氧基香豆素的C5、C6、C8上增加了吸电子基团甲氧基,导致5,6,7,8-四甲氧基香豆素的甲氧基中O与取代基位置C5、C6、C7、C8的键长C5-O11、C6-O12、C7-O13和C8-O14的键长都变长,且C5、C6、C8的电荷变为了正电荷。7-甲氧基香豆素在310 nm处峰和5,6,7,8-二甲氧基香豆素在312 nm处峰都是因为π→π*电荷转移激发;7-甲氧基香豆素在241 nm处峰和5,6,7,8-二甲氧基香豆素在244 nm处峰都是由于π→π*局域激发;7-甲氧基香豆素在197 nm处峰是由于π→π*局域激发而5,6,7,8-二甲氧基香豆素在211 nm处峰不仅由于π→π*局域激发还有n→π*局域激发。
7-methoxycoumarin and 5,6,7,8-tetramethoxycoumarin were studied systematically by density functional theory. Compared with 7-methoxycoumarin, C5, C6, and C8 of
5,6,7,8-tetramethoxycoumarin increased the electron-absorbing group methoxy, the C5-O11, C6-O12, C7-O13, and C8-O14 bond lengths of O in the methoxy group of
5,6,7,8-tetramethoxycoumarin and substituent’s C5, C6, C7, C8, become longer, and the charges of C5, C6, and C8 become positive. The peak at 310 nm of 7-methoxycoumarin and the peak at 312 nm of 5,6,7,8-dimethoxycoumarin are both due to π→π* charge transfer excitation. The peaks of 7-methoxycoumarin at 241 nm and 5,6,7,8-dimethoxycoumarin at 244 nm are both due to π→π* local excitation. The peak at 197 nm of 7-methoxycoumarin is due to π→π* local excita-tion while the peak at 211 nm of 5,6,7,8-dimethoxycoumarin is due not only to π→π* local exci-tation but also to n→π* local excitation.
[1] | 王荣香, 宋佳, 孙博, 等. 香豆素类化合物功能及生物合成研究进展[J]. 中国生物工程杂质, 2022, 42(12): 79-90. |
[2] | Ren, Q.C., Gao, C., Xu, Z., et al. (2018) Bis-Coumarin Derivatives and Their Biological Activities. Current Topics in Medicinal Chemistry, 18, 101-113. https://doi.org/10.2174/1568026618666180221114515 |
[3] | 李再兴. 7-甲氧基香豆素的合成[D]: [硕士学位论文]. 南京: 南京理工大学, 2007. |
[4] | 张永丽, 潘其明, 张贵杰, 等. 山乌桕茎叶的化学成分研究[J]. 中国中药杂志, 2019, 44(17): 3738-3744. |
[5] | 漆淑华, 吴大刚, 罗晓东. 桂林乌桕中的香豆素和鞣花酸类化合物[J]. 天然产物研究与开发, 2004, 16(4): 297-299. |
[6] | 卢辛甜, 邵莉, 赵碧清, 等. 苦笋化学成分及其抗炎活性[J]. 中成药, 2019, 41(11): 2663-2667. |
[7] | 麦景标, 冯俭, 谢玉, 等. 椿皮三氯甲烷部位化学成分研究[J]. 中国实验方剂学杂质, 2011, 17(16): 113-115. |