全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机场沥青基隔离层性能试验及应用效果研究
Performance Test and Application Effect Study of Airport Asphalt-Based Isolation Layer

DOI: 10.12677/MOS.2024.131008, PP. 75-81

Keywords: 机场刚性道面,沥青基隔离层,面层拉应力
Rigid Airport Pavement
, Asphalt-Based Isolation Layer, Surface Tension

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于机场刚性道面研发了一种新型隔离层材料,以同步碎石封层和微表处(稀浆封层)组成的沥青基隔离层,对该隔离层的表观性能和施工方法进行研究,利用ABAQUS软件进行三维有限元建模及数值模拟,明确沥青基隔离层在道面工程中的应用对结构产生的效应。结果表明当使用本文提出的材料设计和施工方法进行水稳沥青基隔离层的铺设,当荷载作用于板边临界荷位时,设置沥青基隔离层可使板底脱空时的面层拉应力降低2.6%~4.5%;当荷载作用于板角荷位时,最大拉应力的减小百分比可达20%以上,大大降低了道面产生断裂的可能。
In this paper, a new type of isolation layer material is developed based on the rigid pavement of the airport, which is composed of an asphalt-based isolation layer composed of a synchronous gravel sealing layer and a micro-surface (slurry sealing layer). The apparent properties and construction methods of the isolation layer are studied, and the three-dimensional finite element modeling and numerical simulation are carried out by using ABAQUS software to clarify the effect of the applica-tion of the asphalt-based isolation layer in pavement engineering on the structure. The results show that when the material design and construction method proposed in this paper are used to lay the water-stabilized asphalt-based isolation layer. When the load acts on the critical load of the slab edge, the asphalt-based isolation layer can reduce the tensile stress of the surface layer when the bottom of the slab is hollowed out by 2.6%~4.5%. When the load acts on the angular load of the plate, the maximum tensile stress can be reduced by more than 20%, which greatly reduces the possibility of fracture on the pavement.

References

[1]  余四新. 设层间功能层的水泥混凝土路面基层应力分析与结构设计[D]: [硕士学位论文]. 西安: 长安大学, 2009.
[2]  Goldbeck, A.T. (1917) Friction Tests of Concrete on Various Sub-Bases. Journal of Agricultural Research, 13, 239-245.
https://doi.org/10.14359/15878
[3]  Friberg, B.F. 1954Frictional Resistance under Concrete Pavements and Restraint Stress in Long Reinforced Slabs. Proceedings of the Thirty-Third Annual Meeting of the Highway Research Board, Washington, DC, 12-15 January 1954, 33.
[4]  Timms, A.G. (1964) Evaluation Subgrade Friction-Reducing Mediums for Rigid Pavements. Highway Re-search Record, 47, 28-38.
[5]  Lee, S.W. (2000) Characteristics of Friction between Concrete Slab and Base. Ksce Journal of Civil Engineering, 4, 265-275.
https://doi.org/10.1007/BF02823975
[6]  Lim, J.S., Park, M.G., Nam, Y.K., et al. (2009) Investigation of Friction Characteristics between Concrete Slab and Subbase Layers. Bmc Veterinary Research, 10, 123-123.
[7]  Jeong, J.H., Park, J.Y., Lim, J.S., et al. (2014) Testing and Modelling of Friction Characteristics between Concrete Slab and Subbase Layers. Road Mate-rials & Pavement Design, 15, 114-130.
https://doi.org/10.1080/14680629.2013.863161
[8]  燕翔. 机场刚性道面水稳沥青基隔离层施工技术研究[J]. 建筑技术开发, 2020, 47(16): 57-58.
[9]  Rufino, D. and Roesler, J. (2006) Effect of Slab-Base Interaction on Measured Concrete Pavement Re-sponses. Journal of Transportation Engineering, 132, 425-434.
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:5(425)

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413