全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模型预测控制的电动汽车电液复合制动力分配策略研究
Research on Electro-Hydraulic Composite Braking Force Distribution Strategy of Electric Vehicle Based on Model Predictive Control

DOI: 10.12677/MOS.2024.131012, PP. 112-122

Keywords: 模型预测控制,路面识别器,能量回收
Model Predictive Control
, Road Identifier, Energy Recovery

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高纯电动汽车制动过程中的能量回收效率和制动的稳定性,通过对电动汽车复合制动系统结构及工作原理进行分析,设计了基于模糊算法的路面识别器,跟踪路面峰值附着系数,以获得制动器的最大制动力。提出了一种基于模型预测控制(Model Predictive Control, MPC)跟踪最佳滑移率的制动力分配的策略方法。从而达到能量回收效率的最大化,并利用AVL/CRUISE和MATLAB/Simulink仿真环境开展联合仿真分析。结果表明:所提出的控制策略与优化前的控制策略对比,保证了车辆制动稳定性的同时,制动距离更小,制动时间更短,电机制动力矩更大,电池荷电状态(State of Charge, SOC)值下降地更为缓慢,在一个FTP、New European Driving Cycle (NEDC)循环工况下电池荷电状态值分别显著提高了0.66%、0.46%。
In order to improve the energy recovery efficiency and braking stability during the braking process of pure electric vehicles, a road recognition device based on a fuzzy algorithm was designed by ana-lyzing the structure and working principle of the electric vehicle composite braking system to track the peak adhesion coefficient of the road surface and obtain the maximum braking force of the brake. A strategy method based on model predictive control (MPC) was proposed to track the opti-mal slip rate of brake force distribution. In this way, energy recovery efficiency is maximized and collaborative simulation analysis is conducted using AVL/CRUISE and MATLAB/Simulink simula-tion environments. The results show that compared with the control strategy before optimization, the proposed control strategy not only ensures the braking stability of the vehicle, but also has a smaller braking distance, shorter braking time, larger motor braking torque, and slower decrease in battery state of charge (SOC) value. Under FTP and new European driving cycle (NEDC) conditions, the battery charge state value significantly increased by 0.66% and 0.46%, respectively.

References

[1]  马建, 刘晓东, 陈轶嵩, 等. 中国新能源汽车产业与技术发展现状及对策[J]. 中国公路学报, 2018, 31(8): 1-19.
[2]  Li, W.B., Long, R.Y., Chen, H., et al. (2017) A Review of Factors Influencing Consumer Intentions to Adopt Battery Electric Ve-hicles. Renewable and Sustainable Energy Reviews, 78, 318-328.
https://doi.org/10.1016/j.rser.2017.04.076
[3]  汪选要, 程义, 程煜. 低附着系数路面车道保持模型预测控制及汽车稳定性控制[J]. 中国机械工程, 2019, 30(9): 14-21.
[4]  Ruan, J., Walker, P.D., Watterson, P.A., et al. (2016) The Dynamic Performance and Economic Benefit of a Blended Braking System in a Multi-Speed Battery Electric Vehicle. Applied Energy, 183, 1240-1258.
https://doi.org/10.1016/j.apenergy.2016.09.057
[5]  Bhandari, R., Patil, S. and Singh, R.K. (2012) Surface Prediction and Control Algorithms for Anti-Lock Brake System. Transportation Research Part C: Emerging Technologies, 21, 181-195.
https://doi.org/10.1016/j.trc.2011.09.004
[6]  彭晓燕. 汽车线控制动系统安全控制技术研究[D]. 长沙: 湖南大学, 2013.
[7]  孔国利, 张璐璐. 双轮倒立摆机器人的模型预测控制策略[J]. 机械设计与制造, 2018(9): 265-268.
[8]  刘志强, 汪浩磊, 陈建兵. 电动汽车机电复合回馈制动模拟试验台设计[J]. 机械设计, 2016, 33(11): 43-47.
[9]  Wang, X.Y., Cheng, Y. and Cheng, Y. (2019) Lane Keeping Model Prediction Control and Vehicle Stability Control on Low Adhesion Coef-ficient Roads. China Mechanical Engineering, 30, 14-21.
[10]  Wang, Z., Fang, S.C. and Gao, D.Y. (2017) Global Extremal Conditions for Multi-Integer Quadratic Programming. Journal of Industrial & Management Optimization, 4, 213-225.
https://doi.org/10.3934/jimo.2008.4.213

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413