全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LabVIEW的压电陶瓷强场机械品质因数测量系统
Measurement System for High-Field Mechanical Quality Factor of Piezoelectric Ceramics Based on LabVIEW

DOI: 10.12677/APP.2024.141001, PP. 1-9

Keywords: 压电陶瓷,强场机械品质因数,虚拟仪器,LabVIEW,自动测量
Piezoelectric Ceramics
, High-Field Mechanical Quality Factor, Virtual Instrument, LabVIEW, Automatic Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

压电材料在强场和弱场条件下的机械品质因数Qm存在较大差别,而目前国际上尚没有通用和成熟的压电材料强场Qm表征方法和测量系统。本文设计了一套基于LabVIEW的压电振子强场机械品质因数测量系统并提出一种新的数据处理方法,实现了仪器控制、波形数据读取、信号滤波和拟合,以及Qm值自动计算功能。用该系统测量了圆环和长条压电振子的Qm值随电压和振动速度变化关系,结果表明随着驱动电场和振动速度的增大,样品的机械品质因数急剧减小。该测量系统运行稳定,可实现仪器控制和数据采集的自动化处理,可以满足压电陶瓷强场机械品质因数测量的需要,能极大地提高测试效率。
There is a significant difference in the mechanical quality factor Qm of piezoelectric materials under high- and low-field conditions, however, currently there is no universal characterization method and testing system for high-field Qm of piezoelectric materials. In this paper, a LabVIEW- based measurement system for the high-field mechanical quality factor (Qm) of piezoelectric ceramic resonators is designed, and a new method of data processing is proposed to realize the functions of instrument control, waveform data acquisition, signal filtering and fitting, and Qm calculation. The system is applied to determine the electric field and vibration velocity dependences of Qm values for thin disk and rectangular piezoelectric ceramic resonators. The results demonstrate a significant decrease of Qm with increasing electric field and vibration velocity. The system provides automated instrument control and data acquisition processing, which meets the needs of high-field mechanical quality factor measurement of piezoelectric ceramics and greatly enhances testing efficiency.

References

[1]  张沛霖, 张仲渊. 压电测量[M]. 北京: 国防工业出版社, 1983.
[2]  贾宝贤, 边文凤, 赵万生, 等. 压电超声换能器的应用与发展[J]. 压电与声光, 2005, 27(2): 131-135.
[3]  Uchino, K., Zheng, J.H., Chen, Y.H., et al. (2006) Loss Mechanisms and High Power Piezoelectrics. Journal of Materials Science, 41, 217-228.
https://doi.org/10.1007/s10853-005-7201-0
[4]  Meitzler, A.H., Berlincourt, D., Welsh, F.S., et al. (1988) IEEE Standard on Piezoelectricity.
[5]  Liu, G., Zhang, S.J., Jiang, W.H., et al. (2015) Losses in Ferroelectric Materials. Materials Science & Engineering R Reports, 89, 1-48.
https://doi.org/10.1016/j.mser.2015.01.002
[6]  刘云, 隆志力, 李华, 等. 压电器件阻抗测试系统的研制[J]. 压电与声光, 2015, 37(6): 1061-1065.
[7]  Priya, S., Viehland, D., Ryu, J., et al. (2001) High-Power Resonant Measurements of Piezoelectric Materials: Importance of Elastic Nonlinearities. Journal of Applied Physics, 90, 1469-1479.
https://doi.org/10.1063/1.1381046
[8]  Shi, H.R., Chen, Z.J., Chen, X., et al. (2021) Self-Heating Phenomenon of Piezoelectric Elements Excited by a Tone-Burst Electric Field. Ultrasonics, 117, Article ID: 106562.
https://doi.org/10.1016/j.ultras.2021.106562
[9]  Uchino, K., Zheng, J.H., Joshi, A., et al. (1998) High Power Characterization of Piezoelectric Materials. Journal of Electroceramics, 2, 33-40.
https://doi.org/10.1023/A:1009962925948
[10]  Sadayuki, T. and Seiji, H. (1992) Vibration-Level Character-istics of Lead-Zirconate-Titanate Ceramics. Japanese Journal of Applied Physics, 31, 3055-3057.
https://doi.org/10.1143/JJAP.31.3055
[11]  蒋朝金, 朱宏宇, 周衍, 等. 阻尼作用下振子相图的电路模拟[J]. 大学物理, 2011, 30(2): 43-45.
[12]  蔡伯濂. 大学物理力学教学研究[M]. 北京: 北京大学出版社, 1982.
[13]  王霞. 虚拟仪器的发展过程及应用[J]. 机械研究与应用, 2009, 22(4): 12-14.
[14]  樊炜. 虚拟任意波信号发生器研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2003.
[15]  Li, G., Tian, F.H., Gao, X.Y., et al. (2020) Investigation of High-Power Properties of PIN-PMN-PT Relaxor-Based Ferroelectric Single Crystals and PZT-4 Piezoelectric Ce-ramics. IEEE Trans Ultrason Ferroelectr Freq Control, 67, 1641-1646.
https://doi.org/10.1109/TUFFC.2020.2979217
[16]  Maeda, M., Washihira, M., Hashimoto, H., et al. (2007) Measurement of Nonlinear Elastic Constants of Piezoelectric Ceramics. Journal of the Physical Society of Japan, 76, Article ID: 084704.
https://doi.org/10.1143/JPSJ.76.084704
[17]  Liu, Y.Y., Ozaki, R. and Morita, T. (2015) Investigation of Nonlinearity in Piezoelectric Transducers. Sensors and Actuators A: Physical, 227, 31-38.
https://doi.org/10.1016/j.sna.2015.03.036

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133