全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Structure of Gravity Funnels and Stability Considerations of Matter in SI Units

DOI: 10.4236/jhepgc.2024.101007, PP. 71-81

Keywords: Black Hole, Dark Matter, Electromagnetic, Gravity, Singularity, Vortex

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can be derived, which can also describe their possible interior. This also leads to questions about stability, which are then addressed and ultimately lead to considerations of black holes and their possible internal structure. The results fit into the observable areas and can also be directly verified because they were analytically calculated in SI units.

References

[1]  Maxwell, J.C. (1965) A Dynamical Theory of the Electromagnetic Field. Philosophical Transactions of the Royal Society of London, 155, 459-512.
https://doi.org/10.1098/rstl.1865.0008
[2]  Bartusch, T. (2020) The Electromagnetic Particle—A Backward Engineering Approach to Matter in SI Units. Journal of High Energy Physics, Gravitation and Cosmology, 6, 774-801.
https://doi.org/10.4236/jhepgc.2020.64052
[3]  Rogowski, W. (1914) Wie kann man sich vom Rotor (Wirbel) eines Vektorfeldes und vom Vektorpotentiale eine Anschauung verschaffen? Archiv für Elektrotechnik, 2, 234-245.
https://doi.org/10.1007/BF01655798
[4]  Hubeny, V.E., Minwalla, S. and Rangamani, M. (2011) The Fluid/Gravity Correspondence. arXiv: 1107.5780
[5]  Spurk, J.H. (2010) Strömungslehre. Springer Verlag, Berlin.
https://doi.org/10.1007/978-3-642-13143-1
[6]  Demtroeder, W. (2015) Experimentalphysik 1: Mechanik und Wärme. Springer Spektrum, Berlin.
[7]  Ross, G. (1984) Grand Unified Theories. Westview Press, Boulder.
[8]  Stoecker, H. (2000) Taschenbuch der Physik. 4 Edition, Harri Deutsch, Frankfurt/Main, Germany.
[9]  Carson, J.R. (1963) Notes on the Theory of Modulation. Proceedings of the IEEE, 51, 893-896.
https://doi.org/10.1109/PROC.1963.2322
[10]  Heisenberg, W. (1927) Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198.
https://doi.org/10.1007/BF01397280
[11]  Einstein, A. (1905) Zur Elektrodynamik bewegter Kärper. Annalen der Physik, 322, 891-921.
https://doi.org/10.1002/andp.19053221004
[12]  Particle Data Group.
https://pdg.lbl.gov/
[13]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman, San Francisco, 875-877.
[14]  Kutner, M. (2003) Astronomy: A Physical Perspective. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511802195
[15]  Levin, J. (10 April 2019) What the Sight of a Black Hole Means to a Black Hole Physicist. Quanta Magazine.
https://www.quantamagazine.org/what-the-sight-of-a-black-hole-means-to-a-black-hole-physicist-20190410/
[16]  Green, A.M. and Kavanagh, B.J. (2021) Primordial Black Holes as a Dark Matter Candidate. Journal of Physics G: Nuclear and Particle Physics, 48, Article ID: 043001.
https://doi.org/10.1088/1361-6471/abc534
[17]  Celotti, A., Miller, J.C. and Sciama, D.W. (1999) Astrophysical Evidence for the Existence of Black Holes. Classical and Quantum Gravity, 16, A3-A21.
https://doi.org/10.1088/0264-9381/16/12A/301
[18]  Corda, C. (2023) Schrödinger and Klein-Gordon Theories of Black Holes from the Quantization of the Oppenheimer and Snyder Gravitational Collapse. Communications in Theoretical Physics, 75, Article ID: 095405.
https://doi.org/10.1088/1572-9494/ace4b2
[19]  van den Bosch, R., Gebhardt, K., Gültekin, K., van de Ven, G., van der Wel, A. and Walsh, J.L. (2012) An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC-1277. Nature, 491, 729-731.
https://doi.org/10.1038/nature11592
[20]  Bekenstein, J.D. (1975) Black Holes with Scalar Charge. Annals of Physics, 91, 75-82.
https://doi.org/10.1016/0003-4916(75)90279-1
[21]  The Event Horizon Telescope Collaboration, Akiyama, K., et al. (2021) First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near the Event Horizon. The Astrophysical Journal Letters, 910, L13.
[22]  Kollatschny, W., Schartel, N., Zetzl, M., Santos-Lleó, M., Rodrí guez-Pascual, P.M. and Ballo, L. (2015) Proving Strong Magnetic Fields Near to the Central Black Hole in the Quasar PG0043 + 039 via Cyclotron Lines. Astronomy & Astrophysics (A&A), 577, Article No. L1.
https://doi.org/10.1051/0004-6361/201525984

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133