This study assesses the
projected changes in the climate zoning of C?te d’Ivoire using the hierarchical
classification of principal components (HCPC) method applied to the daily
precipitation data of an ensemble of 14 CORDEX-AFRICA simulations under RCP4.5
and RCP8.5 scenarios. The results indicate the existence of three climate zones
in C?te d’Ivoire (the coastal, the centre and the north) over the historical
period (1981-2005). Moreover, CORDEX simulations project an extension of the
surface area of drier climatic zones while a reduction of wetter zones,
associated with the appearance of an intermediate climate zone with surface
area varying from 77,560 km2 to 134,960 km2 depending on
the period and the scenario. These results highlight the potential impacts of
climate change on the delimitation of the climate zones of C?te d’Ivoire under
the greenhouse gas emission scenarios. Thus, there is a reduction in the
surface areas suitable for the production of cash crops such as cocoa and
coffee. This could hinder the country’s economy and development, mainly based
on these cash crops.
References
[1]
Donat, M.G., et al. (2013) Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. Journal of Geophysical Research: Atmospheres, 118, 2098-2118. https://doi.org/10.1002/jgrd.50150
[2]
Ardoin-Bardin, S. (2004) Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne. Ph.D. Thesis, Université Montpellier II—Sciences et Techniques du Languedoc, Montpellier. https://theses.hal.science/tel-00568025
[3]
Bodian, A. (2014) Caractérisation de la variabilité temporelle récente des précipitations annuelles au Sénégal (Afrique de l’Ouest). Physio-Géo, 8, 297-312. https://doi.org/10.4000/physio-geo.4243
[4]
Niang, I., et al. (2014) Africa. In: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. and White, L.L., Eds., Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1199-1265.
[5]
Didi Sacré Regis, M., et al. (2020) Using the CHIRPS Dataset to Investigate Historical Changes in Precipitation Extremes in West Africa. Climate, 8, Article 84. https://doi.org/10.3390/cli8070084
[6]
Yapo, A.L.M., et al. (2020) Projected Changes in Extreme Precipitation Intensity and Dry Spell Length in Côte d’Ivoire under Future Climates. Theoretical and Applied Climatology, 140, 871-889. https://doi.org/10.1007/s00704-020-03124-4
[7]
Balliet, R., et al. (2016) évolution Des Extrêmes Pluviométriques Dans La Région Du Gôh (Centre-Ouest De La Côte d’Ivoire). European Scientific Journal, 12, 74. https://doi.org/10.19044/esj.2016.v12n23p74
[8]
Field, C.B., et al. (2018) IPCC, 2012: Summary for Policymakers: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, 111-128. https://doi.org/10.1017/CBO9781139177245
[9]
Panthou, G., Vischel, T. and Lebel, T. (2014) Recent Trends in the Regime of Extreme Rainfall in the Central Sahel. International Journal of Climatology, 34, 3998-4006. https://doi.org/10.1002/joc.3984
[10]
Yapo, A.L.M., et al. (2019) Twenty-First Century Projected Changes in Extreme Temperature over Côte d’Ivoire (West Africa). International Journal of Geophysics, 2019, Article ID: 5610328. https://doi.org/10.1155/2019/5610328
[11]
Konate, D., Didi, S.R., Diedhou, A., Kouassi, K.L. and Coulibaly, T.J.H. (2003) Observed Changes in Rainfall and Characteristics of Extreme Events in Côte d’Ivoire (West Africa). Hydrology, 10, Article 104. https://doi.org/10.3390/hydrology10050104
[12]
Diallo, I., Giorgi, F., Deme, A., Tall, M., Mariotti, L. and Gaye, A.T. (2016) Projected Changes of Summer Monsoon Extremes and Hydroclimatic Regimes over West Africa for the Twenty-First Century. Climate Dynamics, 47, 3931-3954. https://doi.org/10.1007/s00382-016-3052-4
[13]
Tall, M., et al. (2017) Projected Impact of Climate Change in the Hydroclimatology of Senegal with a Focus over the Lake of Guiers for the Twenty-First Century. Theoretical and Applied Climatology, 129, 655-665. https://doi.org/10.1007/s00704-016-1805-y
[14]
Kouadio, Y., Ali, K., Zahiri, E.P. and Assamoi, A. (2007) Etude de la prédictibilité de la pluviométrie en Côte d’Ivoire durant la période de Juillet à Septembre. Revue Ivoirienne des Sciences et Technologie, 10, 117-134.
[15]
Kouao, J.M., Jean-muller, K., Charles, D.S. and Donald, A.B. (2020) Analyse de la régionalisation climatique de la cote d’ivoire dans un contexte de climat changeant. LARHYSS Journal, 17, 235-261.
[16]
Goula, B.T.A., Soro, E.G., Kouassi, W. and Srohourou, B. (2012) Tendances et ruptures au niveau des pluies journalières extrêmes en Côte d’Ivoire (Afrique de l’Ouest). Hydrological Sciences Journal, 57, 1067-1080. https://doi.org/10.1080/02626667.2012.692880
[17]
Gutowski Jr., W.J., et al. (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): A Diagnostic MIP for CMIP6. Geoscientific Model Development, 9, 4087-4095. https://doi.org/10.5194/gmd-9-4087-2016
[18]
Kouassi, A.M., Kouao, J.M. and Kouakou, K.E. (2022) Caractérisation intra-annuelle de la variabilité climatique en Côte d’Ivoire. Bulletin de l’association de géographes français, 99, 289-306. https://doi.org/10.4000/bagf.9534
[19]
Kouassi, A.M., Nassa, R.A.K., Yao, K.B., Kouame, K.F. and Biemi, J. (2018) Modélisation statistique des pluies maximales annuelles dans le district d’Abidjan (sud de la Côte d’Ivoire). Revue Des Sciences De L’Eau, 31, 147-160. https://doi.org/10.7202/1051697ar
[20]
Kouamé (2011) Influence de la variabilité climatique et de la dégradation environnementale sur le fonctionnement de l’hydrosystème du N’zo dans la région guinéenne et semi-montagneuse de la Côte d’Ivoire. Contribution de la télédétection, des systèmes d’Informations Géographiques et du modèle hydrologique HYDROTEL. Master’s Thesis, Université Cocody, Côte d’Ivoire.
[21]
Giorgi, F., Jones, C. and Asrar, G.R. (2009) Addressing Climate Information Needs at the Regional Level: The CORDEX Framework. WMO Bulletin, 58, 175-183.
[22]
Evans, J.P. (2011) CORDEX—An International Climate Downscaling Initiative. 19th International Congress on Modelling and Simulation, Perth, 12-16 December 2011, 2705-2711.
[23]
Camara, M., et al. (2013) Analysis of Rainfall Simulated by CORDEX Regional Climate Models over West Africa. Sécheresse, 24, 14-28. https://doi.org/10.1684/sec.2013.0375
[24]
Klutse, N.A.B., et al. (2016) Daily Characteristics of West African Summer Monsoon Precipitation in CORDEX Simulations. Theoretical and Applied Climatology, 123, 369-386. https://doi.org/10.1007/s00704-014-1352-3
[25]
Dosio, A., Panitz, H.J., Schubert-Frisius, M. and Lüthi, D. (2015) Dynamical Downscaling of CMIP5 Global Circulation Models over CORDEX-Africa with COSMO-CLM: Evaluation over the Present Climate and Analysis of the Added Value. Climate Dynamics, 44, 2637-2661. https://doi.org/10.1007/s00382-014-2262-x
[26]
Diaconescu, E.P., Gachon, P. and Laprise, R. (2015) On the Remapping Procedure of Daily Precipitation Statistics and Indices Used in Regional Climate Model Evaluation. Journal of Hydrometeorology, 16, 2301-2310. https://doi.org/10.1175/JHM-D-15-0025.1
[27]
Funk, C., et al. (2015) The Climate Hazards Infrared Precipitation with Stations a New Environmental Record for Monitoring Extremes. Scientific Data, 2, Article No. 150066. https://doi.org/10.1038/sdata.2015.66
[28]
Anderberg, M.R. (1973) The Broad View of Cluster Analysis. In: Anderberg, M.R., Ed., Cluster Analysis for Applications, Academic Press, Cambridge, 1-9. https://doi.org/10.1016/B978-0-12-057650-0.50007-7
[29]
Kouakou, K.E., Moussa, H., Goula, B.T.A. and Savane Issiaka, I. (2017) Redefinition of Homogeneous Climatic Zones in Cote d’ivoire in a Context of Climate Change. International Journal of Scientific & Engineering Research, 8, 453-462.
[30]
Josse, J. and Husson, F. (2012) Selecting the Number of Components in Principal Component Analysis Using Cross-Validation Approximations. Computational Statistics & Data Analysis, 56, 1869-1879. https://doi.org/10.1016/j.csda.2011.11.012
[31]
Ding, C. and He, X. (2004) K-Means Clustering via Principal Component Analysis. Proceedings of the Twenty-First International Conference on Machine Learning, Banff, 4-8 July 2004, 29. https://doi.org/10.1145/1015330.1015408
[32]
Braeken, J. and Van Assen, M.A.L.M. (2017) An Empirical Kaiser Criterion. Psychological Methods, 22, 450-466. https://doi.org/10.1037/met0000074
[33]
Millot, G. (2018) Comprendre et réaliser les tests statistiques à l’aide de R. 4th Edition, De Boeck Sup. https://www.furet.com/media/pdf/feuilletage/9/7/8/2/8/0/7/3/9782807302914.pdf