全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design

DOI: 10.4236/ojce.2024.141001, PP. 1-37

Keywords: Sheet Pile Curtain Design, Soil-Structure Interaction, Geotechnical Engineering, Advanced Design Techniques, Finite Element Analysis, Innovative Geotechnical Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.

References

[1]  Aid, S., Chace, C., Mopin, A. and Vigouroux, B. (2011) Comment définir un soutènement par palplanches, ainsi que son moyen de mise en oeuvre et tous ses coûts induits. Synthèse Scientifique et Technique.
[2]  Mokeddem, A. (2018) Modélisation géomécanique et probabiliste des rideaux de palplanches: Prise en compte de l’interaction sol-structure et de la variabilité spatiale du sol. Master’s Thesis, Université de Bordeaux, Bordeaux.
[3]  Combarieu, O., Dagba, R., Delannoy, M., Delattre, L., Fauchet, S., Haiun, G., Lelievre, A., Mahut, B., Malaterre, D., Maurel, C., et al. (2003) Ouvrages de soutenement: Recommandations pour l’inspection detaillee, le suivi et le diagnostic des ouvrages de soutenement en parois composites, Techniques Et Methodes Des Laboratoires Des Ponts Et Chaussees-Guide Technique.
http://worldcat.org/isbn/2720803413
[4]  Dawkins, W.P., Strom, R.W. and Ebeling, R.M. (2003) User’s Guide: Computer Program for Simulation of Construction Sequence for Stiff Wall Systems with Multiple Levels of Anchors (CMULTIANC). Information Technology Laboratory (US), Engineer Research and Developement Center Vicksburg MS.
https://erdc-library.erdc.dren.mil/jspui/handle/11681/3328
[5]  Delattre, L. (2001) Un siècle de méthodes de calcul d’écrans de soutènement. I. L’approche par le calcul-les methodes classiques et la methode au coefficient de reaction. Bulletin des laboratoires des ponts et chaussées, 234, 35-55.
https://trid.trb.org/view/958165
[6]  Divet, L., Fasseu, P., Godart, B ., Kretz, T., Laplaud, A., le Mehaute, A., Le Mestre, G., Li, K., Mahut, B., Michel, M., et al. (2003) Ouvrage de soutenement: Recommandations pour l’inspection detaillee, le suivi et le diagnostic des rideaux de palplanches metalliques. Techniques Et Methodes Des Laboratoires Des Ponts Et Chaussees-Guide Technique, Gonflin.
http://worldcat.org/isbn/2720831123
[7]  NF EN 1993-5 (2017) Eurocode 3 -Calcul des structures en acier -Partie 5: pieux et palplanches.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-19935/eurocode-3-calcul-des-structures-en-acier-partie-5-pieux-et-palplanches/fa119785/29662
[8]  Kort, D.A. (2002) Steel Sheet Pile Walls in Soft Soil. DUP Science. Technische Universiteit Delft (The Netherlands), Delft.
[9]  ArcelorMittal (2016) Steel Foundation Solutions -General Catalogue 2016.
https://spundwand.arcelormittal.com/uploads/files/AMCRPS_Gen_Cat_GB_2016%20-Metric%20&%20Imperial%20edition_US_Web_2.pdf
[10]  NF EN 1997-1 (2005) Eurocode 7 : calcul géotechnique -Partie 1: règles générales, Indice de classement P24-251-1.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-19971/eurocode-7-calcul-geotechnique-partie-1-regles-generales/fa045423/25400
[11]  NF (2009) P94-282, Calcul géotechnique-Ouvrages de soutènement—écrans.
[12]  Coulomb, C.A. (2023) Essai sur une application des règles de maximis et minimis a quelques problèmes de statique relatifs a 1’architecture. Revue Française de Géotechnique, 175, Article 43.
https://doi.org/10.1051/geotech/2023019
[13]  Rankine, W.J.M. (1857) II. On the Stability of Loose Earth. Philosophical transactions of the Royal Society of London, The Royal Society London, 147, 9-27.
https://doi.org/10.1098/rstl.1857.0003
[14]  Boussinesq, J. (1876) Essai théorique sur l’équilibre d’élasticité des massifs pulvérulents et sur la poussée des terres sans cohésion. Forgotten Books, London.
https://doi.org/10.3406/marb.1876.1757
[15]  Winkler, E. (1867) Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik: Für polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc. Forgotten Books, London.
[16]  K-Réa (2017) Logiciel de dimensionnement des écrans de soutènement par la méthode aux coefficients de réaction: Parois moulées, rideaux de palplanches, parois berlinoise, Terrasol.
https://www.terrasol.fr/catalogue/k-rea-v4
[17]  Verruijt, A. (1995) Computational Geomechanics. Springer, Dordrecht.
https://doi.org/10.1007/978-94-017-1112-8
[18]  Strom, R.W., Ebeling, R.M., et al. (2001) State of the Practice in the Design of Tall, Stiff, and Flexible Tieback Retaining Walls. US Army Corps of Engineers, Engineer Research and Development Center.
[19]  Kramer, S.L. (1988) Development of P-Y Curves for Analysis of Laterally Loaded Piles in Western Washington. Washington State Department of Transportation.
[20]  Matlock, H, (1970) Correlation for Design of Laterally Loaded Piles in Soft Clay. Offshore Technology Conference, Houston, 21-23 April 1970, OTC-1204-MS.
https://doi.org/10.4043/1204-MS
[21]  Reese, L.C., Cox, W.R. and Koop, F.D. (1974) Analysis of Laterally Loaded Piles in Sand. Offshore Technology Conference, Houston, 5-7 May 1974, OTC-2080-MS.
https://doi.org/10.4043/2080-MS
[22]  Sullivan, W.R., Reese, L.C. and Fenske, C.W. (1980) Unified Method for Analysis of Laterally Loaded Piles in Clay. In: Numerical Methods in Offshore Piling, Thomas Telford Publishing, 135-146.
https://www.icevirtuallibrary.com/doi/abs/10.1680/nmiop.00865.0017
[23]  Magnan, Jean-Pierrre and Mestat, Philippe (1997) Lois de comportement et modélisation des sols. Techniques de l’Ingénieur.
https://doi.org/10.51257/a-v1-c218
[24]  Muller-Breslau, H. (1906) Erddruck auf Stutzmauert. Alfred Kroner, Stutgart.
[25]  Kerisel, J. and Absi, E. (2017) Active and Passive Earth Pressure Tables. Routledge, London.
https://doi.org/10.1201/9781315136615
[26]  Kazmierczak, J.B. (1996) Comportement et dimensionnement des parois moulées dans les argiles raides saturées. Master’s Thesis, Université de Lille, Lille.
[27]  Monnet, A, (1994) Module de réaction, coefficient de décompression, au sujet des paramètres utilisés dans la méthode de calcul élasto-plastique des soutènements. Revue française de Géotechnique, 65, 67-72.
https://www.geotechnique-journal.org/articles/geotech/pdf/1994/01/geotech1994066p67.pdf
https://doi.org/10.1051/geotech/1994066067
[28]  Ménard, L. and Bourdon, G. (1965) Calcul des rideaux de soutènement. Méthode nouvelle prenant en compte les conditions réelles d’encastrement, Sols-Soils.
[29]  Balay, J. (1984) Recommandations pour le choix des paramètres de calcul des écrans de soutènement par la méthode aux modules de réaction. Laboratoire Central des Ponts et Chausees (LCPC).
[30]  Josseaume, H., Delattre, L. and Mespoulhe, L. (1997) Interprétation par le calcul aux coefficients de réaction du comportement du rideau de palplanches expérimental de Hochstetten. Revue française de géotechnique, 79, 59-72.
https://doi.org/10.1051/geotech/1997079059
[31]  Schmitt, P. (1995) Méthode empirique d’évaluation du coefficient de réaction du sol vis-à-vis des ouvrages de soutènement souples. Revue française de Géotechnique, 71, 3-10.
https://doi.org/10.1051/geotech/1995071003
[32]  NF (2009) Calcul géotechnique-Ouvrages de soutènement-Remblais renforcés et massifs en sol cloué.
[33]  Balay, J., Frank, R. and Balay, J. (1988) Parois moulées. Ancrages. Techniques de l’ingénieur, 1, C252-1.
https://doi.org/10.51257/a-v1-c248
[34]  Bustamante, M. and Doix, B. (1985) Une méthode pour le calcul des tirants et des micropieux injectés. Bull Liaison Lab Ponts Chauss.
https://trid.trb.org/view/1030134
[35]  Mokeddem, A., Yanez-Godoy, H. and Elachachi, S.M. (2016) Comportement de rideaux de palplanches et variabilité spatiale multidimensionnelle du sol. Journal of Feline Medicine and Surgery, 30.
[36]  Mokeddem, A., Elachachi, S.M. and Yáñez-Godoy, H. (2017) Modélisation tridimensionnelle de rideaux de palplanches tenant compte de la variabilité spatiale du sol. Academic Journal of Civil Engineering, 35, 416-429.
[37]  Ou, C.Y. (2006) Deep Excavation: Theory and Practice. CRC Press, Boca Raton.
https://doi.org/10.1201/9781482288469
[38]  Ou, C.Y. (2014) Deep Excavation: Theory and Practice. CRC Press, Boca Raton.
[39]  Smith, I.M., Griffiths, D.V. and Margetts, L. (2013) Programming the Finite Element Method. John Wiley & Sons, New York.
[40]  Arafati, N. (1996) Contribution à l’étude des problèmes de déchargement dans les massifs de sol: Application à la modélisation des ouvrages de soutènement. Ecole Nationale des Ponts et Chaussées.
[41]  Mestat, P. and Arafati, N. (1998) Modélisation par éléments finis du comportement du rideau de palpanches expérimental de Hochstetten. Bulletin des laboratoires des ponts et chauss ées, 216, 19-39.
https://www.ifsttar.fr/collections/BLPCpdfs/blpc__216_19-36.pdf
[42]  Vossoughi, K.C. (2001) étude numérique du comportement des ouvrages de soutènement à la rupture. Ecole centrale de Paris, Chatenay-Malabry.
[43]  Nguyen, P.D. (2003) Modélisation numérique des soutènements d’excavation. ENPC, Marne-la-vallée.
[44]  Mestat, P., Bourgeois, E. and Riou, Y. (2004) MOMIS: Base de données sur la confrontation modèles numériques d’ouvrages-mesures in Situ. Applications aux rideaux de palplanches. Bulletin des laboratoires des ponts et chaussées, 49-76.
https://hal.science/hal-01007089
[45]  Mestat, P.H., Bourgeois, E. and Riou, Y. (2004) Numerical Modelling of Embankments and Underground Works. Computers and Geotechnics, 31, 227-236.
https://doi.org/10.1016/j.compgeo.2004.01.003
[46]  Brinkgreve, R.B.J., Kumaeswamy, S. and Swolfs, W.M. (2016) PLAXIS 2016 User’s manual.
https://www.plaxis.com/kb-tag/manuals
[47]  Itasca Consulting Group (2000) User Manual for FLAC-Version 4.0.
[48]  Itasca Consulting Group (2000) FLAC User’s Manual-Version 4.0. Itasca Consulting Group, Inc., Minneapolis.
[49]  Tatsuoka, F. and Shibuya, S. (1991) Deformation Characteristics of Soils and Rocks from Fields and Laboratory Tests. Report of the Institute of industrial Sciences, University of Tokyo (Japan), 37.
https://www.osti.gov/etdeweb
[50]  Doan Tran, H. (2006) Comportement élastique et visqueux des sables en petites et moyennes déformations: Essais sur éprouvette cylindrique creuse et modélisation. INSA, Lyon.
[51]  Delattre, L. (2004) A Century of Retaining Wall Computation Methods III: Modeling of Retaining Walls by Means of the Finite Element Method. Bulletin des Laboratoires des Ponts et Chaussées, 95-117.
https://www.ifsttar.fr/collections/BLPCpdfs/blpc_252-253_95-117_en.pdf
[52]  Kort, D.A. and Kelleners, N.P.A.W. (2000) Sheet Pile Wall Field Test Rotterdam. Delft University of Technology, Delft.
https://research.tudelft.nl/en/publications/sheet-pile-wall-field-test-rotterdam
[53]  Day, R.A. and Potts, D.M. (1994) Zero Thickness Interface Elements-Numerical Stability and Application. International Journal for Numerical and Analytical Methods in Geomechanics, 18, 689-708.
https://doi.org/10.1002/nag.1610181003
[54]  Potts, D. (2002) Guidelines for the Use of Advanced Numerical Analysis. Thomas Telford, Telford.
https://doi.org/10.1680/gftuoana.31258
[55]  Elmi, F., Bourgeois, E., Pouya, A. and Rospars, C. (2006) Elastoplastic Joint Element for the Finite Element Analysis of the Hochstetten Sheet Pile Wall. Sixth European Conference on Numerical Methods in Geotechnical Engineering, Graz, 6-8 September 2006, 411-416.
[56]  von Wolffersdorff, P.A. (1994) The Results of the Sheetpile Wall Field Test in Hochstetten, Univ., Inst. für Bodenmechanik und Felsmechanik, Lehrstuhl für Bodenmechanik.
[57]  Day, R.A. and Potts, D.M. (1998) The Effect of Interface Properties on Retaining Wall Behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 22, 1021-1033.
https://doi.org/10.1002/(SICI)1096-9853(199812)22:12<1021::AID-NAG953>3.3.CO;2-D
[58]  Beer, G. (1985) An Isoparametric Joint/Interface Element for the Analysis of Fractured Rock. International Journal for Numerical Methods in Engineering, 21, 585-600.
https://doi.org/10.1002/nme.1620210402
[59]  Benhamida, B. (1998) Modélisation numérique des murs en sol cloué: Application aux calculs en déformation des murs expérimentaux en vraie grandeur Nos. 1 et 2 du Projet National Clouterre, ENPC, Marne-la-vallée.
[60]  Caquot, A.I. and Kérisel, J.L. (1948) Tables for the Calculation of Passive Pressure, Active Pressure and Bearing Capacity of Foundations. Gautier-Villars, Paris.
[61]  Dong, Y.P. (2014) Advanced Finite Element Analysis of Deep Excavation Case Histories. Ph.D. Thesis, University of Oxford, Oxford.
[62]  Prat, M., Bisch, P.H., Millard, A., Mestat, P., Pijaudier-Calot, G., et al. (1995) La modélisation des ouvrages. Hermes, Paris.
[63]  Bisch, P.H., Langeoire, A., Prat, M. and Semblat, J.F. (1999) Ouvrages en Interaction (emploi des éléments finis en génie civil). Hermes, AFPC-Emploi des Eléments Finis en Génie Civil.
[64]  Philipponnat, G. and Hubert, B. (2016) Fondations et ouvrages en terre. Eyrolles, Paris.
[65]  Woods, R.I. (2003) The Application of Finite Element Analysis to the Design of Embedded Retaining Walls. PhD Thesis, University of Surrey (United Kingdom), Guildford.
https://www.proquest.com/openview/2d32950a48f765439b83d3d562e38007/1?pq-origsite=gscholar&cbl=51922&diss=y
[66]  Desai, C.S., Muqtadir, A. and Scheele, F. (1986) Interaction Analysis of Anchor-Soil Systems. Journal of Geotechnical Engineering, 112, 537-553.
https://doi.org/10.1061/(ASCE)0733-9410(1986)112:5(537)
[67]  Chehade, F.H., Chehade, W., Mroueh, H. And Shahrour, I. (2010) Interaction excavation profonde-structure: Aspects numériques dans les cas bidimensionnels et tridimensionnels. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, 451-458.
https://www.cfmr-roches.org/sites/default/files/jngg/JNGG%202010%20pp%20451-458%20Hage%20Chehade.pdf
[68]  Popa, H., Marcu, A. and Batali, L. (2008) Numerical Modelling and Experimental Measurements for a Retaining Wall of a Deep Excavation in Bucharest, Romania. Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the 6th International Symposium (IS-Shanghai 2008), 187.
https://books.google.bj/books?hl=fr&lr=&id=7B20d_IUGQMC&oi=fnd&pg=PA187&dq=Popa,+H.,+Marcu,+A.+and+Batali,+L.+(2008)+Numerical+Modelling+and+Experimental+Measurements+for+a+Retaining+Wall+of+a+Deep+Excavation+in+Bucharest,+Romania.+Geotechnical+Aspects+of+Underground+Construction+in+Soft+Ground:+Proceedings+of+the+6th+International+Symposium+(IS-Shanghai+2008)&ots=k1mjsdHCLQ&sig=I7ht1QSvzQXfwiEXo6ThIIciZ4c&redir_esc=y#v=onepage&q=Popa%2C%20H.%2C%20Marcu%2C%20A.%20and%20Batali%2C%20L.%20(2008)%20Numerical%20Modelling%20and%20Experimental%20Measurements%20for%20a%20Retaining%20Wall%20of%20a%20Deep%20Excavation%20in%20Bucharest%2C%20Romania.%20Geotechnical%20Aspects%20of%20Underground%20Construction%20in%20Soft%20Ground%3A%20Proceedings%20of%20the%206th%20International%20Symposium%20(IS-Shanghai%202008)&f=false
[69]  Finno, R.J., Blackburn, J.T. and Roboski, J.F. (2007) Three-Dimensional Effects for Supported Excavations in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 133, 30-36.
https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30)
[70]  Bryson, L.S. and Zapata-Medina, D.G. (2012) Method for Estimating System Stiffness for Excavation Support Walls. Journal of Geotechnical and Geoenvironmental Engineering, 138, 1104-1115.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000683
[71]  Mohr, O. (1914) Abhandlungen aus dem Gebiete der technischen Mechanik. Ernst & Sohn, Berlin.
[72]  Mohr, O. (1868) Z architek u ing ver. Hannover.
[73]  Mohr, O. (1868) Beitrag zur Theorie der Holz-und Eisenkonstruktionen. Mohr, Otto, Hannover.
[74]  Charef Khodja, K. (2011) Modélisation de l’interaction sol-structure pour le cas des palplanches (Cas d’un écran de palplanches à AZEFFOUN). Université Mouloud Mammeri de Tizi Ouzou, Tizi Ouzou.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413