全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

晶振夹具盘传送机的设计及仿真分析
Design and Simulation Analysis of Crystal Oscillator Fixture Disk Conveyor

DOI: 10.12677/MOS.2024.131016, PP. 158-168

Keywords: 晶振夹具盘传送机,Solid Works,Simulation,冲击分析,模态分析
Crystal Oscillator Fixture Disk Conveyor
, Solid Works, Simulation, Impact Analysis, Modal Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对晶振生产中多道生产工序之间没有进行有效的对接情况,通过对这一过程实际生产需求的了解,采用Solid Works软件对晶振夹具盘传送机建立三维模型,并基于Simulation对晶振夹具盘传送机关键零件限位挡座进行了冲击仿真,得出在100 N的冲击力下其最大应力为45.1 MP,最大型变量为0.0023 mm,符合设计需求。为预防晶振传送机关键零件承重架发生共振,对其进行了模态分析,其1~6阶的固有频率为,48.21 Hz、66.906 Hz、195.85 Hz、229.22 Hz、310.91 Hz、427.4 Hz,对其1~6阶固有频率进行了分析,其中1阶固有频率接近外部激励频率,为避免承重架在受外部激励的情况下产生共振,对承重架进行了优化,其1~6阶固有频率都有一定提高,最大变形量都有一定降低。该研究可为机械结构的研发设计提供参考。
In view of the fact that there is no effective docking between multiple production processes in crys-tal vibration production, through the understanding of the actual production demand of this pro-cess, Solid Works software is used to establish a three-dimensional model of the crystal vibration clamp plate conveyor, and the impact Simulation is carried out on the limit holder of the key parts of the crystal vibration clamp plate conveyor based on the simulation. It is concluded that the maximum stress is 45.1 MP and the maximum variable is 0.0023 mm under the impact force of 100 N, which meets the design requirements. In order to prevent the resonance of the bearing frame of the key part of the crystal oscillator conveyor, a modal analysis was carried out on it, and its natural frequency of order 1~6 is, 48.21 Hz, 66.906 Hz, 195.85 Hz, 229.22 Hz, 310.91 Hz, 427.4 Hz, the first order natural frequency is close to the external excitation frequency. In order to avoid resonance of the load-bearing frame under external excitation, the load-bearing frame is optimized. The 1~6 or-der natural frequency has a certain increase, and the maximum deformation has a certain decrease. The research can provide reference for the research and design of mechanical structure.

References

[1]  蒋徐前, 陈磊, 张鸣, 等. 一种频率注入型的快速起振晶体振荡器[J]. 电子制作, 2023, 31(8): 83-86.
https://doi.org/10.16589/j.cnki.cn11-3571/tn.2023.08.014
[2]  姚小朋. 石英晶体电参数测量系统的设计与开发[D]: [硕士学位论文]. 西安: 西北工业大学, 2007.
[3]  杨宏斌, 蔡刚, 权亚娟, 等. 一种晶体振荡器自动化测试系统设计与实现[J]. 电子制作, 2023, 31(12): 97-99.
https://doi.org/10.16589/j.cnki.cn11-3571/tn.2023.12.027
[4]  路荣坤, 陈忠孝, 秦刚, 等. 基于4G-DTU 水质监测系统的设计[J]. 机械与电子, 2018, 36(1): 58-61.
[5]  田永盛, 宛琰. 普通晶体振荡器的关键工序研究[J]. 电子产品可靠性与环境试验, 2023, 41(5): 21-26.
[6]  贺利乐. 机械系统动力学[M]. 北京: 国防工业出版社, 2014.
[7]  司亚文, 曾捷, 夏裕彬, 等. 机翼模型应变场分布式光纤监测与重构方法[J]. 振动、测试与诊断, 2020, 40(4): 800-806.
[8]  李辉. 客车车身骨架有限元分析与轻量化改进设计[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2006.
[9]  李耀明, 李有为, 徐立章, 等. 联合收获机割台机架结构参数优化[J]. 农业工程学报, 2014, 30(18): 30-37.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413