全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同代谢目标下甘油代谢通量分布的模型与计算
Model and Calculation of Glycerol Metabolic Flux Distribution under Different Metabolic Targets

DOI: 10.12677/AAM.2024.131010, PP. 76-83

Keywords: 通量分布,代谢网络,甘油代谢,线性规划
Flux Distribution
, Metabolic Network, Glycerol Metabolism, Linear Programing

Full-Text   Cite this paper   Add to My Lib

Abstract:

胞内代谢通量的估计可为理解细胞代谢提供帮助。本研究针对肺炎克雷伯式杆菌甘油代谢,以最大化生物量和最大化ATP作为性能指标函数,以代谢通量作为决策变量,并将代谢通量平衡作为约束条件,建立数学规划模型,用以估计连续培养下不同代谢目标的代谢通量分布。数值结果表明对于给定的稀释速率和初始甘油浓度,在最大化生物量下,细胞代谢主要用于细胞生长以及生产1,3-丙二醇,且流向乙酸乙醇和流向生物质的代谢通量有显著差异;在最大化ATP下,代谢主要用于能量的生成,同时流向2,3-丁二醇和甲酸盐以及流向二氧化碳和氢气的代谢通量相差较大。
The estimation of intracellular metabolic flux is helpful for understanding cellular metabolism. In this paper, a mathematical programming model with the metabolic fluxes as decision variables is proposed for optimizing the flux distribution of glycerol metabolic pathways in Klebsiella pneu-moniae, in which mass-balance equations are used as a constraint. In the model, we respectively use the maximization of biomass and ATP as the performance index. Numerical results show that for a given dilution and initial glycerol concentration, the substrate is mainly consumed for cell growth and the production of 1,3-proapanediol if biomass is maximized, and the metabolic flux to HAc and EtOH are significantly lower than that to the biomass. When the production of ATP is maximized, the substrate is mainly used for energy generation, while the metabolic fluxes to 2,3-butanediol and for mate, as well as to CO2 and H2 also differ greatly.

References

[1]  Zhang, Q. and Xiu, Z. (2009) Metabolic Pathway Analysis of Glycerol Metabolic in Klebsiella pneumonia Incorporat-ing Oxygen Regulatory System. Biotechnology Progress, 25, 103-115.
https://doi.org/10.1002/btpr.70
[2]  Pan, D., Wang, X., Shi, H., Yuan, D. and Xiu, Z. (2018) Dynamic Flux Balance Analysis for Microbial Conversion of Glyc-erol into 1,3-Propanediol by Klebsiella pneumoniae. Bioprocess and Biosystems Engineering, 41, 1793-1805.
https://doi.org/10.1007/s00449-018-2002-4
[3]  Lama, S., Ro, S., Seol, E., Sekar, B., Ainala, S., Thangappan, J., Song, H., Seung, D. and Park, S. (2015) Characterization of 1,3-Propanediol Oxidoreductase (DhaT) for Klebsiella pneumoniae J2B. Biotechnology and Bioprocess Engineering, 20, 971-979.
https://doi.org/10.1007/s12257-015-0635-6
[4]  Chen, X., Xiu, Z., Wang, J., Zhang, D. and Xu, P. (2003) Stoi-chiometric Analysis and Experimental Investigation of Glycerol Bioconversion to 1,3-Propanediol by Klebsiella pneu-moniae under Microaerobic Conditions. Enzyme Microbial Technology, 33, 386-394.
https://doi.org/10.1016/S0141-0229(03)00135-2
[5]  Kumar, V. and Park, S. (2018) Potential and Limitations of Klebsiella pneumoniae as a Microbial Cell Factory Utilizing Glycerol as the Carbon Source. Biotechnology Advances, 36, 150-167.
https://doi.org/10.1016/j.biotechadv.2017.10.004
[6]  Jeong, H, Tombor, B, Abert, R., Oltvai, Z. and Barabási. A. (2000) The Large-Scale Organization of Metabolic Networks. Nature, 40, 651-654.
https://doi.org/10.1038/35036627
[7]  Orth, J., Thiele, I. and Palsson, B. (2010) What Is Flux Balance Analysis? Nature Biotechnology, 28, 245-248.
https://doi.org/10.1038/nbt.1614
[8]  Varma, A. and Palsson, B. (1994) Stoichiometric Flux Balance Models Quantitatively Predict Growth and Metabolic by-Product Secretion in Wild-Type Escherichia coli W3110. Applied and Environmental Microbiology, 60, 3724-3731.
https://doi.org/10.1128/aem.60.10.3724-3731.1994
[9]  Edwards, J., Covert, M. and Palsson, B. (2002) Metabolic Modelling of Microbes: The Flux-Balance Approach. Environmental Mi-crobiology, 4, 133-140.
https://doi.org/10.1046/j.1462-2920.2002.00282.x
[10]  Suchuetz, R., Kuepfer, L. and Sauer, U. (2007) Systematic Evaluation of Objective Functions for Predicting Intracellular Fluxes in Escherichia coli. Molecular Systems Biology, 3, 922-929.
https://doi.org/10.1038/msb4100162
[11]  Sun, Y., Ye, J., Mu, X., Teng, H., Feng, E., Zeng, A. and Xiu, Z. (2012) Nonlinear Mathematical Simulation and Analysis of Dha Regulon for Glyc-erol Metabolism in Klebsiella pneumoniae. Chinese Journal of Chemical Engineering, 20, 958-970.
https://doi.org/10.1016/S1004-9541(12)60424-8
[12]  Zhang, Q., Teng, H., Sun, Y. and Xiu, Z. (2007) Metabolic Flux Analysis of Bioconversion of Glycerol into 1,3-Propanediol by Klebsiella pneumoniae. 2007 1st International Con-ference on Bioinformatics and Biomedical Engineering, Wuhan, 6-8 July 2007, 1269-1272.
https://doi.org/10.1109/ICBBE.2007.327

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413