全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

S-CO2向心透平CFD数值模拟方法研究
Research on CFD Numerical Simulation Method for S-CO2 Centripetal Turbine

DOI: 10.12677/MOS.2024.131025, PP. 255-264

Keywords: 超临界二氧化碳,向心透平,单流道计算域,真实气体性质表
Supercritical Carbon Dioxide
, Centripetal Turbine, Single Channel Computing Domain, Real Gas Properties Table

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对超临界二氧化碳向心透平CFD数值模拟方法进行研究,基于自主设计的10 MW级S-CO2向心透平,分别选取单流道和全周流道作为计算域进行模拟,结果表明,单流道计算域与设计值和全周流道计算结果的误差均在3%以内,从而验证了采用单流道对S-CO2向心透平进行模拟的准确性和可靠性。并针对S-CO2特殊物性,分别采用R-K方程、P-R方程、真实气体性质表(RGPT)进行计算,结果表明,三种不同真实气体性质计算方法在对透平的流量、功率、效率评估方面具有一定的准确性,与设计值误差均在3%以内,但是采用R-K方程和P-R方程计算时,透平的焓值和熵值与实际气体误差较大,采用外部生成真实气体性质表的方法更为准确。
The CFD numerical simulation method for supercritical carbon dioxide centripetal turbine was studied. Based on the self-designed 10 MW S-CO2 centripetal turbine, a single flow channel and a full-circle flow channel were selected as the calculation domain for simulation. The results showed that the error between the calculation domain of a single flow channel and the design value and the calculation result of a full-circle flow channel were both within 3%. Thus, the accuracy and reliabil-ity of simulating S-CO2 centripetal turbine with a single flow channel can be verified. In view of the difficulties brought by the special physical properties of S-CO2 to the numerical simulation results, the R-K equation, P-R equation and real gas Property table (RGPT) are used to calculate, and the results show that the three different calculation methods of real gas properties have a certain accu-racy in the evaluation of flow, power and efficiency of the turbine, and the error between them and the design value is less than 3%. However, when the R-K equation and P-R equation are used to calculate, the enthalpy and entropy of the turbine have a large error with the actual gas, and the method of generating the real gas properties table externally is more accurate.

References

[1]  Xu, J.l., Liu, C., Sun, E.H., et al. (2019) Perspective of S-CO2 Power Cycles. Energy, 186, Article 115831.
https://doi.org/10.1016/j.energy.2019.07.161
[2]  Mecheri, M. and Le Moullec, Y. (2016) Supercritical CO2 Brayton Cy-cles for Coal-Fired Power Plants. Energy, 103, 758-771.
https://doi.org/10.1016/j.energy.2016.02.111
[3]  Ahn, Y., Bae, S.J., Kim, M., et al. (2015) Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Devel-opment. Nuclear Engineering and Technology, 47, 647-661.
https://doi.org/10.1016/j.net.2015.06.009
[4]  赵煜, 董自春, 张羽, 等. 超临界二氧化碳发电系统研究进展[J]. 热能动力工程, 2019, 34(1): 11-16.
[5]  Brun, K., Friedman, P. and Dennis, R. (2017) Fundamentals and Applications of Super-critical Carbon Dioxide (sCO2) Based Power Cycles. Woodhead Publishing, Sawston.
[6]  谢永慧, 王雨琦, 张荻, 等. 超临界二氧化碳布雷顿循环系统及透平机械研究进展[J]. 中国电机工程学报, 2018, 38(24): 166-176, 344.
[7]  丰镇平, 赵航, 张汉桢, 等. 超临界二氧化碳动力循环系统及关键部件研究进展[J]. 热力透平, 2016, 45(2): 85-94.
[8]  孙玉伟, 陈晨, 秦天阳, 等. 高速S-CO2向心透平几何参数优化及变工况特性分析[J]. 中国电机工程学报, 1-13.
https://doi.org/10.13334/j.0258-8013.pcsee.221896
[9]  王春阳. 70MW级超临界二氧化碳闭式布雷顿循环向心透平设计分析[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020.
[10]  吕国川. 超临界二氧化碳向心涡轮优化设计及分析[D]: [硕士学位论文]. 大连: 大连理工大学, 2019.
[11]  吕国川, 王晓放, 祝畅, 等. MW级超临界二氧化碳向心涡轮设计及分析[J]. 工程热物理学报, 2022, 43(1): 67-73.
[12]  王巧珍. 7.5 MW超临界二氧化碳向心透平气动设计及性能分析[D]: [硕士学位论文]. 北京: 华北电力大学, 2021.
[13]  周奥铮, 宋健, 任晓栋, 李雪松. 超临界二氧化碳布雷顿循环及其向心透平的设计与分析[J]. 工程热物理学报, 2019, 40(6): 1233-1239.
[14]  Saeed, M. and Kim, M.H. (2018) Analysis of a Recompression Supercritical Carbon Dioxide Power Cycle with an Integrated Turbine Design/Optimization Algorithm. En-ergy, 165, 93-111.
https://doi.org/10.1016/j.energy.2018.09.058
[15]  Grnman, A. and Uusitalo, A. (2022) Analysis of Radial-Outflow Turbine Design for Supercritical CO2 and Comparison to Radial-Inflow Turbines. Energy Conversion and Management, 252, Article 115089.
https://doi.org/10.1016/j.enconman.2021.115089

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413