The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO2/day and COD of 12.8775 kgO2/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m2, divided into two cells of 108.58 m2 each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.
References
[1]
Cf, O. (2015) Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York.
[2]
Prüss-Ustün, A., Wolf, J., Corvalán, C., Neville, T., Bos, R. and Neira, M. (2017) Diseases Due to Unhealthy Environments: An Updated Estimate of the Global Burden of Disease Attributable to Environmental Determinants of Health. Journal of Public Health, 39, 464-475. https://doi.org/10.1093/pubmed/fdw085
[3]
OMS (2015) Profil sanitaire du Sénégal. OMS, Dakar.
[4]
Lombard-Latune, R. (2019) Innover pour les services d’assainissement en zone tropicale: Approche technique par filtres plantés de végétaux et accompagnement par modélisation participative. PhD Thesis, Université de Lyon, Lyon.
[5]
Figoli, A., Nikiema, J., Weissenbacher, N., Langergraber, G., Marrot, B. and Moulin, P. (2014) Wastewater Treatment Practices in Africa-Experiences from Seven Countries in Waterbiotech Project. Biotechnology for Sustainable Water Supply in Africa. https://hal.science/hal-01307494/
[6]
ANSD (2019) Situation économique et sociale du Sénégal en 2016: Chapitre VIII, Eau et Assainissement. Comite de Redaction de L’agence Nationale de la Statistique et de la Demographie, Dakar.
[7]
Magallanes, L.A., et al. (2021) Water Reuse Strategy through Phyto-Purification for Experiential Learning in a Rural School. Proceedings of the 2020 4th International Conference on Education and E-Learning (ICEEL’ 20), New York, February 2021, 102-107. https://doi.org/10.1145/3439147.3439174
[8]
P. d. (PAEMS) (2018) Atlas Eau Potable et Assainissement en Milieu Scolaire.
[9]
UNICEF (2017) Rapport sur l’assainissement au Sénégal. Sénégal.
[10]
Vymazal, J. (2011) Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environmental Science & Technology, 45, 61-69. https://doi.org/10.1021/es101403q
[11]
Irie, J.G. (2023) Effet des saisons sur la variation du niveau de pollution organique des eaux de la lagune Ebrié en Cote d’Ivoire. International Journal of Biological and Chemical Sciences, 17, 720-734. https://doi.org/10.4314/ijbcs.v17i2.35
[12]
Kirchhoff, C.E. (2019) Les systèmes de traitement des eaux usées s’adaptentils au changement climatique? The Journal of the American Water Resources Association, 55, 869-880. https://doi.org/10.1111/1752-1688.12748
[13]
Mddelcc, Q. (2016) Procédures d’échantillonnage pour le suivi de la qualité de l’eau en rivière, Québec. In Bibliothèque et Archives nationales du Québec. https://collections.banq.qc.ca/ark:/52327/bs2976730 .
[14]
Nill, R. (2019) Comment sélectionner et utiliser l’équipement de protection individuelle. Manuel de sécurité et de santé au travail.
[15]
O. US EPA (2023) Procedures for Collecting Wastewater Samples. https://www.epa.gov/quality/procedures-collecting-wastewater-samples
[16]
O. mondiale de la santé (OMS) (2019) Lignes directrices relatives à l’assainissement et à la santé.
[17]
Eme, C. (2015) Composition des eaux usées domestiques par source d’émission à l’échelle de l’habitation. Publ. Onema.
[18]
Simpson, B., et al. (2013) Wastewater Sampling: Operating Procedure. Region 4 U.S. Environmental Protection Agency, Science and Ecosystem Support Division, Athens.
[19]
Lateu, U. (2023) Laboratoire de Traitement des Eaux Usées (LATEU-UCAD). https://lateu.ucad.sn/
[20]
Prambudy, H.S. (2019) Les tests de la demande chimique en oxygène (DCO) et de la demande biologique en oxygène (DBO) de l’eau de la rivière à Cipager Cirebon. Journal of Physics: Conference Series, 1360, Article ID: 012010.
[21]
Asteris, P.G. (2020) Machine Learning Approach for Rapid Estimation of Five-Day Biochemical Oxygen Demand in Wastewater. Water, 15, Article No. 103. https://doi.org/10.3390/w15010103
[22]
Bertrand, E.N. (2008) Etude de l’influence des matières en suspension sur les sols irrigués par les eaux usées traitées. Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou.
[23]
Banas, D. (2006) Nitrates. The White Paper Pollutants Habitat.
[24]
Yu, C., et al. (2019) Managing Nitrogen to Restore Water Quality in China. Nature, 567, 516-520. https://doi.org/10.1038/s41586-019-1001-1
[25]
Jiao, G.M. (2021) Avancées et défis récents en matière d’élimination et de recyclage du phosphate des eaux usées à l’aide d’adsorbants dérivés de la biomasse. Chemosphère, 278, Article ID: 130377.
[26]
Makuwa, S., Tlou, M., Fosso-Kankeu, E. and Green, E. (2020) Evaluation of Fecal Coliform Prevalence and Physicochemical Indicators in the Effluent from a Wastewater Treatment Plant in the North-West Province, South Africa. International Journal of Environmental Research and Public Health, 17, 6381. https://doi.org/10.3390/ijerph17176381
[27]
Berland, J.M., Boutin, C., Molle, P. and Cooper, P. (2001) Extensive Wastewater Treatment Processes Adapted to Small and Medium Sized Communities (500 to 5000 Population Equivalents): Implementation of Council Directive 91-271 of 21 May 1991 Concerning Urban Waste Water Treatment.
[28]
Bourrier, R., Satin, M. and Selmi, B. (2010) Technical Guide to Sanitation. The Monitor.
[29]
W.H. Organization (2006) WHO Guidelines for the Safe Use of Wastewater Excreta and Greywater. Vol. 1, World Health Organization, Geneva. https://www.who.int/publications/i/item/9241546859
[30]
(2020) Règlement (UE) 2020/741 du Parlement européen et du Conseil du 25 mai 2020 relatif aux exigences minimales applicables à la réutilisation de l’eau (Texte présentant de l’intérêt pour l’EEE), Vol. 177. http://data.europa.eu/eli/reg/2020/741/oj/fra
[31]
LATEU. Présentation|LATEU|Laboratoire de Traitement des Eaux Usées. https://lateu.ucad.sn/article/pr%C3%A9sentation
[32]
Torrens, A., de la Varga, D., Ndiaye, A.K., Folch, M. and Coly, A. (2020) Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water, 12, Article No. 11. https://doi.org/10.3390/w12113139
[33]
Calheiros, C.S., Rangel, A.O. and Castro, P.M. (2007) Constructed Wetland Systems Vegetated with Different Plants Applied to the Treatment of Tannery Wastewater. Water Research, 41, 1790-1798. https://doi.org/10.1016/j.watres.2007.01.012
[34]
Kadlec, R.H. and Wallace, S. (2008) Treatment Wetlands. CRC Press, Boca Raton. https://doi.org/10.1201/9781420012514
[35]
Paulus, A. (2011) Le traitement des boues d’épuration sur filtre planté de roseaux. Eau, l’INDUSTRIE, les Nuisances, No. 347, 59-65.
[36]
Tchobanoglus, G., Burton, F. and Stensel, H.D. (2003) Wastewater Engineering: Treatment and Reuse. Journal of the American Water Works Association, 95, 201.
[37]
Cooper, P. (1999) A Review of the Design and Performance of Vertical-Flow and Hybrid Reed Bed Treatment Systems. Water Science & Technology, 40, 1-9. https://doi.org/10.2166/wst.1999.0125
[38]
Brix, H. (1997) Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Science & Technology, 35, 11-17. https://doi.org/10.2166/wst.1997.0154