全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Daily Global Solar Radiation with Different Sunshine-Based Models for Some Burundian Stations

DOI: 10.4236/epe.2024.161001, PP. 1-20

Keywords: Clearness Index, Two Kinds of Relative Sunshine Duration, Ångström-Prescott Linear Model and Four Derivatives, Statistical Tests, Six Burundian Stations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations include the Ångström-Prescott linear model and four amongst its derivatives, i.e. logarithmic, exponential, power and quadratic functions. Monthly mean values of daily global solar radiation and sunshine duration data for a period of 20 to 23 years, from the Geographical Institute of Burundi (IGEBU), have been used. For any of the six stations, ten single or double linear regressions have been developed from the above-said five functions, to relate in terms of monthly mean values, the daily clearness index (\"\") to each of the next two kinds of relative sunshine duration (RSD): \"\" and \"\" . In those ratios, G0, S0 and \"\" stand for the extraterrestrial daily solar radiation on a horizontal surface, the day length and the modified day length taking into account the natural site’s horizon, respectively. According to the calculated mean values of the clearness index and the RSD, each station experiences a high number of fairly clear (or partially cloudy) days. Estimated values of the dependent variable (y) in each developed linear regression, have been compared to measured values in terms of the coefficients of correlation (R) and of determination (R2), the mean bias error (MBE), the root mean square error (RMSE) and the t-statistics. Mean values of these statistical indicators have been used to rank, according to decreasing performance level, firstly the ten developed equations per station on account of the overall six stations, secondly the six stations on account of the overall ten equations. Nevertheless, the obtained values of those indicators lay in the next ranges for all the developed sixty equations: \"\" ; \"\" ;

References

[1]  (2017) International Rankings of Burundi-2017; Burundi Data Portal.
https://burundi.opendataforafrica.org/data#menu=topic
[2]  Ma, C.C.Y. and Iqbal, M. (1984) Statistical Comparison of Solar Radiation Correlations. Solar Energy, 33, 143-148. https://doi.org/10.1016/0038-092X(84)90231-7
[3]  Iqbal, M. (1983) An Introduction to Solar Radiation. Academic Press, Toronto.
[4]  Bashahu, M. and Nkundabakura, P. (1994) Analysis of Daily Global Irradiation Data for Five Sites in Rwanda and One in Senegal. Renewable Energy, 4, 425-435.
https://doi.org/10.1016/0960-1481(94)90050-7
[5]  Bashahu, M. and Mpanzimana, D. (2009) Estimation of the Monthly Average Daily Global Solar Irradiation with Climatological Parameters at Some Burundian Stations. International Review of Physics, 3, 237-243.
[6]  Bristol, K.L. and Campbell, G.S. (1994) On the Relationship between Incoming Solar Radiation and Daily Maximum and Minimum Temperature. Agricultural and Forest Meteorology, 31, 159-166.
https://doi.org/10.1016/0168-1923(84)90017-0
[7]  Grossi Gallegos, H., Righini, R. and Raichijk, C. (2006) Analysis of Alternative for the Assessment of the Solar Resource in Argentina. Proceedings of the IXth World Renewable Energy Congress (WREC IX), Florence, 19-25 August, Paper ID: RT 7 (CD-ROM).
[8]  Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X. and Xiang, Y. (2018) Evaluation and Development of Temperature-Based Empirical Models for Estimating Daily Global Solar Radiation in Humid Regions. Energy, 144, 903-914.
https://doi.org/10.1016/j.energy.2017.12.091
[9]  Chen, R., Ersi, K., Yang, J., Lu, S. and Zhao, W. (2004) Validation of Five Global Radiation Models with Measured Daily Data in China. Energy Conversion and Management, 45, 1759-1769.
https://doi.org/10.1016/j.enconman.2003.09.019
[10]  Akpootu, D.O., et al. (2023) Sunshine and Temperature Based Models for Estimating Global Solar Radiation in Maiduguri, Nigeria. Saudi Journal of Engineering and Technology, 8, 82-90.
https://doi.org/10.36348/sjet.2023.v08i05.001
[11]  Reddy, M.V., Suvarana, R.P., Kumari, S.P. and Gopal, K.R. (2018) Estimation of Global Solar Radiation Using Sunshine and Temperature Based Models Over Anantapur Region. International Journal of Creative Research Thoughts (IJCRT), 6, 607-618.
[12]  Ohunakin, O.S., Adaramola, M.S., Ogewola, O.M. and Fegenle, R.O. (2013) Correlations for Estimating Solar Radiation Using Sunshine Hours and Temperature Measurement in Osogbo, Osun State, Nigeria. Frontiers in Energy, 7, 214-222.
https://doi.org/10.1007/s11708-013-0241-2
[13]  Mohamed, N. (2010) Etude Comparative des Méthodes d’Estimation du Rayonnement Solaire. Mémoire de Magister, Université Ferhat Abbas, Sétif.
[14]  Al-Salihi, A.M., Kadun, M.M. and Mohamed, A.J. (2010) Estimation of Global Solar Radiation on Horizontal Surface Using Routine Meteorological Measurements for Different Cities in Iraq. Asian Journal of Scientific Research, 3, 240-248.
https://doi.org/10.3923/ajsr.2010.240.248
[15]  Fan, J., Wang, X., Wu, L., Zhang, F., Lu, X. and Xiang, Y. (2018) New Combined Models for Estimating Daily Global Solar Radiation Based on Sunshine Duration in Humid Regions: A Case Study in South China. Energy Conversion and Management, 156, 618-625.
https://doi.org/10.1016/j.enconman.2017.11.085
[16]  Sarkar, M.N.I. and Sifat, A.I. (2016) Global Solar Radiation Estimation from Commonly Available Meteorological Data for Bangladesh. Renewables: Wind, Water and Solar, 3, Article No. 6.
https://doi.org/10.1186/s40807-016-0027-3
[17]  Angstrom, A. (1924) Solar and Terrestrial Radiation. Quarterly Journal of Royal Meteorological Society, 50, 121-126.
https://doi.org/10.1002/qj.49705021008
[18]  Paltineau, C., Mihailescu, I.F., Torica, V. and Albu, A.N. (2002) Correlation between Sunshine Duration and Global Solar Radiation in South-Eastern Romania. International Agrophysics, 16, 139-145.
[19]  Prescott, J.A. (1940) Evaporation from a Water Surface in Relation to Solar Radiation. Transactions of the Royal Society of South Australia, 64, 114-125.
[20]  Andretta, A., Bartoli, B., Coluzzi, B., Cuomo, V., Francesca, M. and Serio, C. (1981) Global Solar Radiation Estimation from Relative Sunshine Hours in Italy. Journal of Applied Meteorology and Climatology, 2, 1377-1384.
https://doi.org/10.1175/1520-0450(1982)021<1377:GSREFR>2.0.CO;2
[21]  Abdul-Aziz, J., Nagi, A.A. and Zumailan, A.A.R. (1993) Global Solar Estimation from Relative Sunshine Hours in Yemen. Renewable Energy, 3, 645-653.
https://doi.org/10.1016/0960-1481(93)90071-N
[22]  Drif, M. and Chikh, M. (2000) Estimation de l’Irradiation Solaire par la Logique Floue. Rеvuе des Energies Renouvelables, Chemss, 105-110.
https://api.semanticscholar.org/CorpusID:171259650
[23]  Poudyal, K., Bhattarai, B.K., Sapkota, B. and Kjeldstal, B. (2012) Estimation of Global Solar Radiation Using Sunshine Duration in Himalaya Region. Research Journal of Chemical Sciences, 2, 20-25.
[24]  Govindasamy, T.R. and Chetty, N. (2018) Quantifying the Global Solar Radiation Received in Pietermaritzburg, Kwazulu-Natal to Motivate the Consumption of Solar Technologies. Open Physics, 16, 786-794.
https://doi.org/10.1515/phys-2018-0098
[25]  Cao, Q., Liu, Y., Lyu, K., Lu, Y., Li, D.H.W. and Yang, L. (2020) Solar Radiation Zoning and Daily Global Radiation Models for Regions with Only Surface Meteorological Measurements in China. Energy Conversion and Management, 225, Article ID: 113447.
https://doi.org/10.1016/j.enconman.2020.113447
[26]  Almorox, J. and Hontoria, C. (2004) Global Solar Radiation Estimation Using Sunshine Duration in Spain. Energy Conversion and Management, 45, 1529-1535.
https://doi.org/10.1016/j.enconman.2003.08.022
[27]  El-Metwally, M. (2005) Sunshine and Global Solar Radiation Estimation at Different Sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1331-1342.
https://doi.org/10.1016/j.jastp.2005.04.004
[28]  Zhang, Y. (2006) Comparison of Measured and Estimated Monthly Average Daily Global Radiation in Shanghai, Nanjing and Hangzhou Areas in East China. Proceedings of the IXth World Renewable Energy Congress (WREC IX), Florence, 19-25 August, Paper ID: RTPC 26 (CD-ROM).
[29]  Luis, M.A., Felipe, P.R. and Pilar, N.R. (2008) Estimation of Global Solar Radiation by Means of Sunshine Duration. In: Goswami, D.Y. and Zhao, Y., Eds., Proceedings of ISES Wold Congress 2007 (Vol. I-Vol. II), Springer, Berlin, 2627-2631.
https://doi.org/10.1007/978-3-540-75997-3_530
[30]  Muzathik, A.M., et al. (2011) Daily Global Solar Radiation Estimate Based on Sunshine Hours. International Journal of Mechanical and Materials Engineering, 6, 75-80.
[31]  Khan, M.M. and Ahmad, M.J. (2012) Estimation of Global Solar Radiation Using Clear Sky Radiation in Yemen. Journal of Engineering Science and Technology Review, 5, 12-19.
https://doi.org/10.25103/jestr.052.03
[32]  Gana, N.N. and Akpootu, D.O. (2013) Estimation of Global Solar Radiation Using Four Sunshine Based Models in Kebbi, North-Western, Nigeria. Advances in Applied Science Research, 4, 409-421.
[33]  Razika, I., Nabila, I. and Marouane, M. (2015) Estimation of Global Solar Radiation Using Sunshine Duration for M’Sila (Algeria). 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakesh, 10-13 December 2015, 1-6.
https://doi.org/10.1109/IRSEC.2015.7455004
[34]  Er, Z., Rouabah, Z. and Turna, I.B. (1017) A Modal Study on the Estimation of Daily Solar Radiation from Sunshine Duration. Acta Physica Polonica A, 132, 1070-1075.
https://doi.org/10.12693/APhysPolA.132.1070
[35]  Anis, M.S., Jamil, B., Ansari, M.A. and Bellos, E. (2019) Generalized Models for Estimation of Global Solar Radiation Based on Sunshine Duration and Detailed Comparison with the Existing: A Case Study for India. Sustainable Energy Technologies and Assessments, 31, 179-198.
https://doi.org/10.1016/j.seta.2018.12.009
[36]  Betti, T., Zulin, I., Brkic, S. and Tuka, B. (2020) A Comparison of Models for Estimating Solar Radiation from Sunshine Duration in Croatia. International Journal of Photoenergy, 2020, Article ID: 9605950.
https://doi.org/10.1155/2020/9605950
[37]  Uckan, I. and Khuddur K.M. (2022) Improving of Global Solar Radiation Forecast by Comparing Other Meteorological Parameter Models with Sunshine Duration Models. Environmental Science and Pollution Research.
https://doi.org/10.21203/rs.3.rs-853866/v1
[38]  Lan, K., Wang, L., Zhou, Y., Zhand, Z., Fang, S. and Cao, P. (2023) The Applicability of Sunshine-Based Global Solar Radiation Models Modified with Meteorological Factors for Different Climate Zones of China. Frontiers in Energy Research, 10, Article 1010745.
https://doi.org/10.3389/fenrg.2022.1010745
[39]  Kotu, T.B., Ancha, V.R., Abulkadir Hassen, A.A. and Fanta, S.W. (2023) Prediction of Global Solar Radiation Based on Sunshine Duration Hours in Ethiopia’s Amhara Region. In: Woldegiorgis, B.H., Mequanint, K., Getie, M.Z., Mulat, E.G. and Alemayehu Assegie, A., Eds., Advancement of Science and Technology, Springer, Cham, 1-31.
https://doi.org/10.1007/978-3-031-33610-2_1
[40]  Bashahu, M., Nsabimana, J.C. and Manirakiza, F. (2006) Beta Probability Density Functions and Reference Distributions of Relative Sunshine Duration Data from Burundian Stations. ISESCO Science and Technology Vision, 2, 39-43.
[41]  Bashahu, M. and Butisi, B. (2010) Statistical Analysis of Daily Global Solar Irradiation Data Using Beta Distributions at Some Burundian Stations. International Journal of Physical Science, 2, 35-41.
[42]  Bashahu, M. and Manirakiza, E. (2013) Reference Distributions of Daily Clearness Index Data from Burundian Stations. International Review of Physics, 7, 352-357.
[43]  Bashahu, M. and Ntirandekura, D. (2019) Analysis of Sunshine Duration Data Using Two-Parameter Weibull Distributions. Modern Environmental Science and Engineering, 5, 635-644.
[44]  Ratto, C.F. (1986) Sun-Earth Astronomical Relationships and the Extraterrestrial Solar Radiation. In: Guzzi, R. and Justus, C.G., Eds., Physical Climatology for Solar and Wind Energy, World Scientific, Singapore, 143-148.
[45]  Pashiardis, S., Pelengaris, A. and Kalogurou, S.A. (2023) Geographical Distribution of Global Radiation and Sunshine Duration Over the Island of Cyprus. Applied Science, 13, Article 5422.
https://doi.org/10.3390/app13095422
[46]  Bashahu, M. (2003) Statistical Comparison of Models for Estimating the Monthly Average Daily Diffuse Radiation at a Subtropical African Site. Solar Energy, 75, 43-51.
https://doi.org/10.1016/S0038-092X(03)00213-5
[47]  Bashahu, M. and Buseke, M. (2016) Statistical Analysis of Hourly Wind Speed Data from Some Burundian Stations Using Beta Probability Density Functions. Modern Environmental Science and Engineering, 2, 740-746.
https://doi.org/10.15341/mese(2333-2581)/11.02.2016/005
[48]  Honerkamp, J. (1999) Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. VCH Publishers, New York.
[49]  Critical Values of Student’s t Distribution with ν Degrees of Freedom .
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133