全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

染色机喷嘴缝隙的流动分析与结构优化
Flow Analysis and Structural Optimization of Gaps in Dyeing Machines Nozzle

DOI: 10.12677/MOS.2024.131031, PP. 324-335

Keywords: 染色机喷嘴,环形缝隙形状,数值模拟,优化
Dyeing Machine Nozzle
, Annular Gap Shape, Numerical Simulation, Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高染色机环形喷嘴的冲击和牵引性能,通过数值模拟分析研究了四种环形缝隙形状(矩形、锥形、锥直形、维多辛斯基形)喷嘴性能的差异,并对锥直形喷嘴结构参数进行了正交实验,还建立了回归预测模型,并利用算法进行了多目标优化,得到了最优结构组合,最后开展了数值模拟验证。结果表明:在不同性能指标下,锥形、锥直形和维多辛斯基形喷嘴均大于矩形喷嘴,且锥直形和维多辛斯基形喷嘴两者性能接近;优化后的锥直形喷嘴在缝隙入口大小为6.00 mm、直段长度为2.00 mm,出口间隙为1.50 mm以及射流角度为40?时,性能有了进一步的提升。
In order to improve the impact and traction performance of dyeing machine annular nozzles, the differences in the performance of nozzles with four annular gap shapes (Rectangular, Conical, Cone Straight, and Vidocinsky) were investigated through numerical simulation analysis, then orthogonal experimental analysis was carried out on the structural parameters of cone-straight nozzles, and a regression prediction model was also established, and a multi-objective optimization was carried out by using an algorithm to get the optimal structural combinations. And build related experi-ments to verify the simulation model. The results show that: under different performance indexes, the conical, conical straight and Vidocinsky nozzles are larger than rectangular nozzles, and the performance of conical straight and Vidocinsky nozzles are close to each other; the optimized cone straight nozzles with a gap inlet size of 6.00 mm, a straight section length of 2.00 mm, a gap outlet size of 1.50 mm and a jet angle of 40? provide a further performance improvement.

References

[1]  张汶定. 直旋混合射流破岩钻进能力及关键参数研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2023.
[2]  杨冬冬. 多重管法旋喷注浆用射流喷嘴的结构设计与试验研究[D]: [硕士学位论文]. 长春: 吉林大学, 2017.
[3]  张峰, 邓永锋, 等. 三重管法高压喷射注浆装置水气同轴喷嘴CFD模拟[J]. 东南大学学报(自然科学版), 2022, 52(4): 623-630.
[4]  Marko, J., Henri, O. and Josko, V. (2022) CFD Analysis of Thermal Fields for Ice Abrasive Wa-ter Jet. International Journal of Mechanical Sciences, 220, Article ID: 107154.
https://doi.org/10.1016/j.ijmecsci.2022.107154
[5]  童毅. 水采高压水枪喷嘴的几何结构及设计[J]. 水力采煤与管道运输, 2015(3): 1-7.
[6]  Cui, D.D., Li, H.W. and He, J. (2022) Applications of Water Jet Cutting Technology in Agricultural Engineering: A Review. Applied Sciences, 12, Article No. 8988.
https://doi.org/10.3390/app12188988
[7]  Wen, J.W., Qi, Z.W., Behbahani, S.S., et al. (2019) Research on the Structures and Hydraulic Performances of the Typical Direct Jet Nozzles for Water Jet Technology. Journal of the Bra-zilian Society of Mechanical Sciences and Engineering, 41, Article No. 570.
https://doi.org/10.1007/s40430-019-2075-2
[8]  Huang, L.Y. and Chen, Z.S. (2022) Effect of Technological Pa-rameters on Hydrodynamic Performance of Ultra-High-Pressure Water-Jet Nozzle. Applied Ocean Research, 129, Article ID: 103410.
https://doi.org/10.1016/j.apor.2022.103410
[9]  Xin, Q., Su, X., Alavi, S., et al. (2018) Effects of Conical Nozzle and Its Geometry on Properties of an Inductively Coupled Plasma Jet Used for Optical Fabrication. Applied Thermal En-gineering, 128, 785-794.
https://doi.org/10.1016/j.applthermaleng.2017.07.131
[10]  张吉智, 魏列江, 张振华, 等. 基于CFD的喷嘴结构对高压水射流反推特性的影响[J]. 液压与气动, 2021, 45(3): 102-107.
[11]  He, S.S., Qian, Y., Xue, W.L., et al. (2019) Numerical Simulation of Flow Field in Air-Jet Loom Main Nozzle. Autex Research Journal, 19, 181-190.
https://doi.org/10.1515/aut-2018-0053
[12]  Yu, M.H., Wang, C., Wang, L., et al. (2022) Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy, 24, Article No. 1632.
https://doi.org/10.3390/e24111632
[13]  陈亮. 基于CFD的喷气织机主喷嘴引纬流场分析及优化[D]: [硕士学位论文]. 苏州: 苏州大学, 2015.
[14]  陈立秋. 1:8浴比高不高? [J]. 染整技术, 2008(9): 51-52.
[15]  Rupp, J. (2010) Recent Developments in Dyeing. Textile World, 160, 36-37.
[16]  Juraeva, M., Ryu, K.J. and Song, D. (2014) Optimum Design of the Injection Nozzle System of a Three-Drive Jigger Dyeing Machine. Textile Research Journal, 84, 1247-1254.
https://doi.org/10.1177/0040517514521121
[17]  Osman, A., Delcour, L., Hertens, I., et al. (2018) Toward Three-Dimensional Modeling of the Interaction between the Air Flow and a Clamped-Free Yarn inside the Main Nozzle of an Air Jet Loom. Textile Research Journal, 89, 914-925.
https://doi.org/10.1177/0040517518758006
[18]  Vahid, M.S. and Fathali, M. (2023) Comparison of Effects of Four Subgrid-Scale Turbulence Models in Large Eddy Simulation of a Large Wind Farm. Journal of Mechanical Science and Technology, 37, 2439-2449.
https://doi.org/10.1007/s12206-023-0420-y
[19]  张科. 基于CFD的喷气织机主喷嘴气流场分析及局部结构参数优化[D]: [硕士学位论文]. 苏州: 苏州大学, 2010.
[20]  Qian, M., Li, J., Xiang, Z., et al. (2019) Effect of Pin Di-ameter Degressive Gradient on Heat Transfer in a Microreactor with Non-Uniform Pin-Fin Array under Low Reynolds Number Conditions. Energies, 12, Article No. 2702.
https://doi.org/10.3390/en12142702
[21]  Qian, M., Mei, D.Q., Yi, Z., et al. (2017) Fluid Flow and Heat Transfer Performance in a Micro-Reactor with Non-Uniform Micro-Pin-Fin Arrays for Hydrogen Production at Low Reynolds Number. International Journal of Hydrogen Energy, 42, 553-561.
https://doi.org/10.1016/j.ijhydene.2016.10.150
[22]  Wang, Y.S., Politano, M. and Weber, L. (2019) Spillway Jet Regime and Total Dissolved Gas Prediction with a Multiphase Flow Model. Journal of Hydraulic Research, 57, 26-38.
https://doi.org/10.1080/00221686.2018.1428231
[23]  姜峰, 李明海, 李远哲, 等. 基于数值模拟的汽油机喷嘴结构优化CFD分析[J]. 热科学与技术, 2018, 17(3): 204-210.
[24]  李猛, 何雪明, 高彬, 等. 淹没环境下高压水射流喷嘴的结构优化[J]. 液压与气动, 2022, 46(7): 31-39.
[25]  杨蒙, 郭霁贤, 张国强, 等. 基于正交试验的新型混凝土喷嘴结构优化研究[J]. 液压与气动, 2021(2): 100-104.
[26]  郑永忠, 刘江坚, 董林, 等. 交变循环染色方式及控制[J]. 印染, 2023, 49(8): 58-61.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413