全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于蜂窝状流场结构电解池性能研究
Research on the Performance of Electrolytic Cell Based on Honeycomb Flow Field Structure

DOI: 10.12677/MOS.2024.131036, PP. 377-386

Keywords: 仿生,电解池,多物理场
Bionics
, Electrolytic Cell, Multi-Physics Field

Full-Text   Cite this paper   Add to My Lib

Abstract:

质子交换膜电解水制氢技术在制氢领域有着广泛的发展前景,为深入研究该技术,文章使用商业软件Comsol Multiphysics建立一个考虑膜内水分输运的三维、两相、非等温全耦合质子交换膜电解池模型,以精确地描述电解池在实际运行中的传输反应性能。研究结果显示,虽然性能和直通道结构区别不大,但是高电压下膜具有更低的温度,这可以提高电解池高压运行下的寿命,并揭示了流量的电解池性能,温度水含量的影响。以及电解内部温度分布情况,最后分析了电解池内电解质电导率的变化趋势。
Proton exchange membrane electrolysis for hydrogen production has a broad development pro-spect in the field of hydrogen production. In order to further study this technology, a 3D, two-phase, non-isothermal fully coupled proton exchange membrane electrolysis cell model considering water transport in the membrane was established by using commercial software Comsol Multiphysics in order to accurately describe the transmission reaction performance of the electrolytic cell in actual operation. The results show that although there is little difference in performance and through-channel structure, the membrane has a lower temperature at high voltage, which can im-prove the life of the electrolytic cell under high voltage operation, and reveal the influence of flow rate on the electrolytic cell performance and temperature water content. The temperature distri-bution inside the electrolytic cell was also analyzed. Finally, the changing trend of electrolyte con-ductivity in the cell was analyzed.

References

[1]  Pittock, A.B. (2005) Climate Change: Turning up the Heat. Environmental Health Perspectives, 102, 444-447.
https://doi.org/10.1289/ehp.102-1567123
[2]  俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021(2): 23.
[3]  郭博文罗, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951.
[4]  Chu, S., Cui, Y. and Liu, N. (2017) The Path towards Sustainable Energy. Nature Materials, 16, 16-22.
[5]  郑可昕, 高啸天, 范永春, 等. 支撑绿氢大规模发展的氨、甲醇技术对比及应用发展研究[J]. 南方能源建设, 2023, 10(3): 63-73.
[6]  张从容. 能源转型中的电解水制氢技术发展方向与进展[J]. 石油石化节能与减排, 2021, 6(4): 1-4, 16.
[7]  郭丹丹, 滕越, 迟军, 等. 碱性水电解非贵金属析氧催化剂的研究进展[J]. 可再生能源, 2022, 40(1): 21-26.
[8]  何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
[9]  刘瑗玥, 刘宏波, 何静, 等. 沟槽结构对质子交换膜电解池性能的影响[J]. 过程工程学报, 2023, 23(5): 703-712.
[10]  陈涛, 乔运乾, 李昌平, 等. 基于植物叶脉的PEMFC流场结构设计[J]. 太阳能学报, 2013, 34(3): 453-458.
[11]  李宇婷, 陆规, 李元媛. 雪花拓扑极板质子交换膜燃料电池性能优化[J]. 工程热物理学报, 2020, 41(12): 2900-2907.
[12]  Kang, H.C., Jum, K.M. and Sohn, Y.J. (2019) Performance of Unit PEM Fuel Cells with a Leaf-Vein-Simulating Flow Field-Patterned Bipolar Plate. Interna-tional Journal of Hydrogen Energy, 44, 24036-24042.
https://doi.org/10.1016/j.ijhydene.2019.07.120
[13]  Wang, Y.L., et al. (2021) Bio-Inspired Design of an Auxiliary Fishbone-Shaped Cathode Flow Field Pattern for Polymer Electrolyte Membrane Fuel Cells. Energy Conversion and Management, 227, Article ID: 113588.
[14]  Abdin, Z., Webb, C.J. and Gray, E.M. (2015) Modelling and Simulation of a Proton Exchange Membrane (PEM) Electrolyser Cell. International Journal of Hydrogen Energy, 40, 13243-13257.
https://doi.org/10.1016/j.ijhydene.2015.07.129
[15]  Wang, Z.M., et al. (2021) Numerical Investigation of Water and Temperature Distributions in a Proton Exchange Membrane Electrolysis Cell. Science China (Technological Scienc-es), 64, 1555-1566+1596-1599.
https://doi.org/10.1007/s11431-021-1810-9
[16]  Rahim, A.H.A., Tijani, A.S., Kamarudin, S.K., et al. (2016) An Overview of polymer Electrolyte Membrane Electrolyzer for Hydrogen Production: Modeling and Mass Transport. Journal of Power Sources, 309, 56-65.
https://doi.org/10.1016/j.jpowsour.2016.01.012
[17]  Chao, X. and Faghri, A. (2010) Water Transport Characteris-tics in a Passive Liquid-Feed DMFC. International Journal of Heat and Mass Transfer, 53, 1951-1966.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.060
[18]  Grigoriev, S.A., Kalinnikov, A.A., Millet, P., et al. (2010) Mathematical Modeling of High-Pressure PEM Water Electrolysis. Journal of Applied Electrochemistry, 40, 921-932.
https://doi.org/10.1007/s10800-009-0031-z
[19]  Meng, H. (2007) A Two-Phase Non-Isothermal Mixed-Domain PEM Fuel Cell Model and Its Application to Two-Dimensional Simulations. Journal of Power Sources, 168, 218-228.
https://doi.org/10.1016/j.jpowsour.2007.03.012
[20]  Guo, H., Guo, Q., Ye, F., et al. (2019) Three-Dimensional Two-Phase Simulation of a Unitized Regenerative Fuel Cell during Mode Switching from Electrolytic Cell to Fuel Cell. Energy Conversion and Management, 195, 989-1003.
https://doi.org/10.1016/j.enconman.2019.05.069
[21]  Lei, X., Liu, X., Alaje, T., et al. (2014) A Two-Phase Flow and Non-Isothermal Agglomerate Model for a Proton Exchange Membrane (PEM) Fuel Cell. Energy, 73, 618-634.
https://doi.org/10.1016/j.energy.2014.06.065
[22]  Hao, C., Hang, G., Fang, Y., et al. (2021) A Numerical Study of Orientated-Type Flow Channels with Porous-Blocked Baffles of Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy, 46, 29443-29458.
[23]  Majasan, J.O., Cho, J.I.S., Dedigama, I., et al. (2018) Two-Phase Flow Behaviour and Performance of Polymer Electrolyte Membrane Electrolysers: Electrochemical and Optical Charac-terisation. International Journal of Hydrogen Energy, 43, 15659-15672.
https://doi.org/10.1016/j.ijhydene.2018.07.003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413